Recurrent Neural

Networks

Roberto Basili, Danilo Croce
Machine Learning, Deep Learning 2023/2024

Outline

m Recurrent and Recursive Networks

Training Recurrent Networks

Long Short Term Memory (LSTM) networks

LSTMS: Applications to Language Processing

Perspectives

Recurrent Neural Networks

m Used mainly to model sequences
= naturally applied to textual and speech problems

m A representation at time step 7 is made
dependent on the representations of the
preceding steps (i-1, i-2, ...)

m connections between units form a directed cycle

® @@

=

|

&)
> —

&

Recurrent Neural Networks

m Commons tasks are

m Janguage models: predict the next word in a sentence given
the already seen word

m speech recognition: predict a word given the current wave
form and the preceding words

® machine translation: produce a sequence in a target
language given an input sequence in a source language

m The most famous and effective model of RNNs are the
Long-Short Term Memory (LSTM) Networks (Sepp
Hochreiter and Jurgen Schmidhuber, 1997)

m they are meant to better deal with long-range dependencies

Neural Networks for Natural
Language Processing

m | inguistic features have been highly enriched since NN
language models have been infroduced

m Words, n-grams as well as sentences, paragraphs have been
modeled through efficient and highly robust neural learners

m Representation are usually dense embeddings
m Making explicit Use of the contexts: Recurrent Nefworks

m Tasks have been extended beyond Classification:
m Transducing, Ranking, Encoding, Decoding

m Generation is a form of transduction and can be adapted to
conversation

Recurrent Neural Networks

m For example, consider the classifcal form of a
dynamical system

m |fs corresponding unfolded computational graph

Is as follows
O (OO
P ogl) b= -))
\'h-. /I j f f f \'\. ’J

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time ¢, and the
function f maps the state at ¢ to the state at ¢t + 1. The same parameters (the same value
of 6 used to parametrize f) are used for all time steps.

® ® ®
T T

i

>

A —

! A
V%

W,
:
5

Unfold

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input @ by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of a single time
step. (Right) The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state,

h" = f(r=1 2" 9), (10.5)

illustrated in figure 10.2; typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

We can represent the unfolded recurrence after ¢ steps with a function g(t):

= (R, 2. g). (10.7)
The function ¢(*) takes the whole past sequence (z), 21 2(t=2) 22 g1)

as input and produces the current state, but the unfolded recurrent structure
allows us to factorize ¢() into repeated application of a function f.

Using a RNN

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ¥ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U, hidden-to-hidden recurrent connections
parametrized by a weight matrix W, and hidden-to-output connections parametrized
by a weight matrix V. Equation 10.8 defines forward propagation in this model. (Left)
The RNN and its loss drawn with recurrent connections. (Right) The same seen as a
time-unfolded computational graph, where each node is now associated with one particular
time instance.

Using a RNN (2)

Forward propagation
begins with a specification of the initial state h(®). Then, for each time step from
t=1tot =7, we apply the following update equations:

a = b+wht Y rU2W, (10.8)
h) = tanh(a®), (10.9)
o) = c+VhW®, (10.10)
9 = softmax(o®), (10.11)

where the parameters are the bias vectors b and ¢ along with the weight matrices
U,V and W, respectively, for input-to-hidden, hidden-to-output and hidden-
to-hidden connections.

Simple RNN

11.1 Simple RNN

The simplest RNN formulation, known as an Elman Network or Simple-RNN (S-RNN), was
proposed by Elman (1990) and explored for use in language modeling by Mikolov (2012).
The S-RNN takes the following form:

Si :Rsnxx(si—laxi) = g(xin + Si—lvvS +b)

Yi :OSRNN(Si} = 8j

(38)

si,yi € RE. x; e R, WX g Rlzxds | Ws ¢ RExds | ¢ R

That is, the state at position i is a linear combination of the input at position i and
the previous state, passed through a non-linear activation (commonly tanh or ReLLU). The
output at position i is the same as the hidden state in that position.™

Recurrent neural networks (RNNS-

« An RNN can be unwrapped and implemented using the same
weights and biases at each step to link units over time as
shown below

* The resulting unwrapped RNN is similar to a hidden Markov
model, but keep in mind that the hidden units in RNNs are not
stochasftic

Y1 Yo) 7 (Ym

Slides for Chapter 10, Deep learning, from the Weka book, Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Recurrent neural networks
(RNNs)

m Recurrent neural networks apply linearmatrix operations to the curren
observation and the hidden units from the previous time step, and the resulting
linear terms serve as arguments of activation functions act():

ht e g(WhXt =k Uhht—l 2z bh)
0, =f(W.h, +b,)

®m The same matrix U, is used at each time step

m The hidden units in the previous step h,_; influence the computation of h, where
the current observation x; contributesto a W, x; termthat is combined with U, h; ;
and bias by, terms

= Both W, and b, are typically replicated overtime

m The output layeris modeled by a classical neural network activation function
applied to a linear transformation of the hidden units, the operationis replicated

at each step.
Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPPTT

m For training a recurrent network, a solution is to unfold the
recurrent structure and expand it as a feedforward neural
network with a certain number of time steps: then apply
traditional backpropagation onto this unfolded neural
network.

m This solutfion is known as Backpropagation through Time
(BPTT), independently invented by several researchers
including (Robinson and Fallside, 1987; Werbos, 1988; Mozer,
1989)

The loss, exploding and vanishing
gradients

® The loss for a particular sequence in the fraining data can be
computed either at each time step or just once, at the end of
the sequence.

m |n either case, predictions will be made after many processing
steps and this brings us tTo an important problem.

® The gradient for feedforward networks decomposes the
gradient of parameters at layer | into a ferm that involves the
product of matrix multiplications of the form aj'WT(*1) (remind
the backpropagation in feedforward network)

m A recurrent network uses the same matrix at each time step,
and over many steps the gradient can very easily either
diminish to zero or explode to infinity—just as the magnitude of
any number other than one taken to a large power either
approaches zero or increases indefinitely

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPTT: the algorithm

1. Present asequence of k1 timesteps of input and
output pairs to the network.

2. Unroll the network then calculate and
accumulate errors across k2 fimesteps.

3. Roll-up the network and update weights.

4, Repeat

m The TBPTT algorithm requires the consideration of two parameters:
m k1: The number of forward-pass timesteps between updates.

m thisinfluences how slow or fast training willbe, given how often weight
updates are performed.

m k2: The number of timesteps to which to apply BPTT.

m it should be large enough to capture the temporal structure in the
problem for the network to learn.

m Too large a value results in vanishing gradients

BPTT

0E <~ OE,
OW “~ oW

0E, OE,dy, 0s,

— E() El E.? E3 El
OW 0y, 0s, 0W
But s,=tanh (Ux, +Ws,) { } ‘ H {
ROE O OEONO
S_3 depends on s_2, which Q

depends on W and s_1, and so on. H l H H '{
3

E; < 0E;0y;0s; 05 Lo 1 L2 &

QD

Vanishing Gradients

.....

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for
the vanilla RNN unit.

Dealing with exploding
gradients

m The use of L1 or L2 regularization can mitigate the problem of
exploding gradients by encouraging weights to be small.

m Another strategy is to simply detect if the norm of the gradient
exceeds some threshold, and if so, scale it down.

m This is sometimes called gradient (norm) clipping where for a
gradient vector g and threshold T,

9L
IIgII

m where Tis a hyperparameter, which can be set to the average norm
over several previous updates where clipping was not used.

if ||gll =T then g « —

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Teacher Forcing

Train time Test time

Figure 10.6: Ilustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) At train time, we feed the correct output y*) drawn from the train
set as input to h(!*1). (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y(f) with the model’s output
o(f), and feed the output back into the model.

Long-term Dependencies
with one single layer

& ©

b

® © o

output

self-loop

Dedaling with
_.ong-term
Dependencies

input input gate

AWAWA

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

forget gate

LSTMS

o0

cell state

h

=1

hidden state /
units

OO0

X

t
input

from "Recurrent Neural Networks and LSTM explained", Purnasai Gudikandula, Medium, URL:
https://purnasaigudikandula.medium.com/recurre nt-neural-networks-and-Istm-explaine d-7f51c7f6bbb?

https://purnasaigudikandula.medium.com/recurrent-neural-networks-and-lstm-explained-7f51c7f6bbb9

LSTMS (Hochreiter & Schmidhuber, 1997)

& ®
T\ - i T\
|~ [ltdd

I
&) x)
® The Long Short-Term Memory (LSTM) architecture (Hochreiter
& Schmidhuber, 1997) was designed to solve the vanishing
gradients problem.

® Main idea: to infroduce as part of the state representation
also specialized memory cells (a vector C) that can
preserve gradients across fime.

m Access to the memory cells is confrolled by gating
components, i.e. smooth mathematical functions that
simulate logical gates.

& ®

T
LSTMS 1 ”;
o

l
©) ® &

m At each input state, a gate is used to decide:
= how much of the new input should be written to the memory cell,
= how much of the current content of the memory cell should be forgotten.

m Concretely, a gate gin [0;1]"is a vector of values in the range [0; 1]
that is multiplied component-wise with another vector C in R", and the
result is then added to another vector.

m |ndices in C corresponding to near-one values in g are allowed to pass,
while those corresponding to near-zero values are blocked.

4 layer RNNS
2 ®

A
é N\ e
—»— @ —>
Ganh>
A ’_qb (X0
el |
_»
\I)_> J’\ J

|
&

O

Neural Network Pointwise Vector
Layer Operation Transfer

> <

Concatenate Copy

... The memory component
and the gates

®

!

fe=0Ws-hi—1,2¢] + by)

Ci1

va

) /D)
@ W

5
B
|§|:ﬁl

® The FORGET gate

... The memory component
and the gates

c,
‘e @ > %
' ’it =0 (Wi-[ht_l,xt] - bz)
Ci = tanh(We-[he—1, 2] + be)
hi1

® The INPUT gafe [

... The memory component
and the gates

®

C;_ Ci
t—1 Q(/ @ > :

m Updating the MEMORY

C

t—1 CX @

ftT %tr'%§ Ciy = fir x Ciq +1iy + Cy

v

... The memory component
and the gates

®

C;_ Ci
t—1 Q(/ @ > :

m Computing the OUTPUT

he A
‘%ﬁ’ op =0 (W, [hi—1,74] + b,)
N ol . hy = o4 x tanh (C})

LSTMS

Mathematically, the LSTM architecture is defined as:™
sj = Ristu(sj_1,Xj) =[c;j: hy]
ci=cj_1 ©f+goi
h; =tanh(cj) ©® o
i =0 (x; W 4+ h;_; Wh)
f =0 (x;W* 4+ h;_, W) (39)
0 = (xjW*° 4 h;_; Who)
g = tanh(x;W™® + hj_lwhg)

¥i—= OLSTM(SjJ :hj

sj € R¥™" x; € R%, ¢, hy,i,f,0,g € R™, WX ¢ R=*dh Whe ¢ Rdnxdn

LSTM $ $
A lelet

2 ®

Mathematically, the LSTM architecture is defined as:" Neural Network

Layer
sj = Risra(sj—1,x;) =[cj: hy]

ci=cj10f+g0oi
h; =tanh(cj) ® o

i =0(x;W* + h;_, Wh)

f =0 (x;W*f 4+ h;_, Whi)

0 =0 (x;W*° + hj_lwlm)

g = tanh(x; W*& + hj,lwhg)

Yi— C)LSTI\'I(SjJ :hj

O

Pointwise
Operation

(39)

sie R?% x; e R, ¢ hyi.f,0,g € R%", WX ¢ RI=>dn Whe ¢ Rdn>dn

|
&

Vector
Transfer

=

Concatenate

_<

Copy

LSTMs and vanishing
gradients

The so-called “long short tferm memory” (LSTM) RNN architecture was
specifically created to address the vanishing gradient problem.

Uses a combination of hidden units, elementwise products and sums
between units to implement gates that control “memory cells”.

Memory cells are designed to retain information without modification
for long periods of time.

They have their own input and output gates, which are controlled by
learnable weights that are a function of the current observation and
the hidden units at the previous time step.

As a result, backpropagated error terms from gradient computations
can be stored and propagated backwards without degradation.

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Other RNN architectures

ad) Recurrent networks can be made
bidirectional, propagating information in
both directions
m They have been used for a wide variety of applications,

including protein secondary structure prediction and
handwriting recognition

b) An “encoder-decoder” network creates @
fixed-length vectorrepresentation for
variable-length inputs, the encoding can be
used to generate a variable-length
seguence as the output

m Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Training different Types of RNNSs

I R,0 ;L
L___r___:
X1

loss

J predict & T
. cale loss '

| R,0 L R.O i-l R.O L R.O
L___I___: L___I___: L___T___J L___[___J
Xo Xg My X5

Figure 7: Acceptor RNN Training Graph.

v

R / T _:____j;;fi_

predict & °
. cale loss

© predict &
i 1
. cale loss .

¥
T sy
P RO ——
X1

7 prediet & T

i
.

cale loss v
¥y2
Pt
|
R,O —
1
Xz

redict &

¥s
R.O Ei..:
X3

cale loss

s,

Y4
T s
RO
Lo]
X4

© predict &

L)

. cale loss

Figure 8: Transducer RNN Training Graph.

Training different Types of RNNSs

loss
J— »_ sum O
_— ff'7 ___
/ — —__T:__— - \
——— R SR ""-'_-'_________ el
- - . ; ‘/:' e - B

/ prediet & v predict & 0 predict & T predict & T predict & T

1] L i
cale loss '+, calcloss . caleloss .+ caleloss . caleloss

Vi Ya] Y4 Y5
.d mTT e d oo omT d T 4 "oTToTT d rrTTooTTT
So | S1 | Sz i S | Sg |
— i Rp.Op | Bp.Op | Rp.Op i Rp.Op i Rp.Op 1
Lo Lo o] Lo ! Lo L]
n n " j n
X1 Xg X3 | XNy X5 :
so LSt | s3 | | S§ L os§ | osg
R, Op ReOp —— Rg.Op ¢ R, Op | Rg,Op ——
Lo ___!] Lo ___! Lo Lo ____! Lo______1
X1 Xa Xg Xg Xs

Figure 9: Encoder-Decoder RNN Training Graph.

Training different Types of RNNS

Ythe Ybrown

Y.
(Eonc‘nt ({?{}llf“dtﬁ\‘
¥y
b [b I b
4 i b b 51 N
' R",0 . RO |
Lo Lo
f f f f f
¥i ¥a ¥a Ya ¥s5
S i S i A R fFr--ToTT S f
f:nﬂ, | ! f:nl | ! 532 | ! 53 | ! :34 | ! :35
:Rfoi__.JIRJ'.DJ'.E__p:RfEDJ’E__;:RJeri__.JIRIDIE_%
Lo I Lo Lo Lo
Xthe Xbrown X fome Xjumped X.

Figure 11: biRNN over the sentence “the brown fox jumped .”.

Encoder-decoder deep

architectures

m Given enough data, a deep encoder-decoder
architecture (see below) can yield results that
compete with hand-engineered translation systems.

m The connectivity structure means that partial
computations in the model can flow through the
graph in a wave (darker nodes in fig.)

L h@e

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by |. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

k¥
¥y
ey

RNNS - Bibliographic Notes &
Further Readings

Graves et al. (2009) demonstrate how recurrent neural networks are
particularly effective at handwriting recognition,

Graves et al. (2013) apply recurrent neural networks to speech.

The form of gradient clipping presented above was proposed by Pascanu
et al. (2013).

Hochreiter and Schmidhuber (1997) is the seminal work on the “Long Short-
term Memory” architecture forrecurrent neural networks;

= our explanation follows Graves and Schmidhuber (2005)'s formulation.

Yoav Goldberg, A Primer on Neural Network Models for Natural Language
%ocg‘)essing, Journal of Artificial Intelligence Research volume 57 pp 345-420,
1

Greff et al. (2015)'s paper “LSTM: A search space odyssey” explored a wide
variety of variants and finds that:

= none of them significantly outperformed the standard LSTM architecture; and

m forget gates and the output activation function were the most critical components.
Forget gates were added by Gers et al. (2000).

RNNSs - Bibliographic Nofes &
Further Readings

IRNNs were proposedby Le et al. (2015)
Chung et al. (2014) proposed gated recurrent units
Schuster and Paliwal (1997) proposed bidirectional recurrent neural networks

Chen and Chaudhari (2004) used bi-directional networks for protein structure
prediction; Graves et al. (2009) used them for handwritingrecognition

Cho et al. (2014) used encoder-decodernetworks for machine translation,
while Sutskever et al. (2014) proposed deep encoder-decodernetworksand
used them with massive quantities of data

For further accounts of advancesin deep learning and a more extensive
history of the field, consult the reviews of LeCun et al. (2015), Bengio (2009),
and Schmidhuber (2015)

