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Deep Learning
Revolution
IT LEARNS ON ITS OWN. 

IT WORKS LIKE THE BRAIN.

IT CAN DO ANYTHING.



My experience  
with Deep Learning for Language

``I'm sorry Dave, 
I'm afraid I can't do that.''

(not in the scary sense)



My experience  
with Deep Learning for Language
• With proper tools, easy to produce "innovative" models. 

• Not so easy to get good results. 
• With Feed-forward nets, hard to beat linear models w/ 

human engineered feature combinations. 

• On 20-newsgroups, NaiveBayes+TfIdf wins over deep 
Feed-forward-nets and ConvNets. 

• Semi-sup learning sort-of easy with word-embeddings. 

• RNNs (in particular LSTMs) are really really cool.
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May be different if you 
care to optimize 

parameters like crazy. 
I don't have the resources 

nor the patience.
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word2vec

I dog
I cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler,

mixed-breed, doberman, pig
I sheep

I cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

I november
I october, december, april, june, february, july, september,

january, august, march
I jerusalem

I tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

I teva
I pfizer, schering-plough, novartis, astrazeneca,

glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia
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inputs to almost any model 
and get a few points boost 

in accuracy
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Use them to build stuff

Try to do it in an interesting way



Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff
chunking / 
tagging/

compression

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

multi-task learning



Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both

Simple & Effective Parsing Accuracies Graph-based & Transition-based

Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod

rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.

Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s

word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj

posi�1, posi, posj�1, posj

posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
.

.

.

+
Few Context Rich, Learned,
BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!
score(sent, h,m)

Score Function
���!
score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max

y0 6=y

X

(h,m)2y0

(

���!
score(x, h,m) + I(h,m) 62y

))

First-Order Neural Parser
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Transition-based Parsing Algorithm (Greedy Optimization)
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Arc-Hybrid Neural Parser
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Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

syntactic
 parsing
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Transition-based Parsing Algorithm (Greedy Optimization)
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Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff
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Syntactic Parsing

The soup , which I expected to be good , was bad
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Transition-based Parsing Algorithm (Greedy Optimization)
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Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff
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Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both

Simple & Effective Parsing Accuracies Graph-based & Transition-based

Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad
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Dependency parsing is the task of extracting a dependency tree for a given sentence.

Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s

word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj

posi�1, posi, posj�1, posj

posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
.

.

.

+
Few Context Rich, Learned,
BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!
score(sent, h,m)

Score Function
���!
score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max

y0 6=y

X

(h,m)2y0

(

���!
score(x, h,m) + I(h,m) 62y

))
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Transition-based Parsing Algorithm (Greedy Optimization)
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Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff
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X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
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Path LSTM Term-pair Classifier
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Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v

w

x

, ~v

w

y

vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [ ~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

hypernymy
detection
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Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v
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vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [ ~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.
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Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v
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vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [ ~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.
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Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u

i

to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the
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Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
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Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u

i

to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:
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tomorrow
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the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.
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This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:
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The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the
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The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines: 
the shared task 
baseline system (ST-
Base) and an 
implementation 
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model from (Faruqui 
et. al., 2016) (Fact.)

• Got the 2nd/3rd 
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which language) in 
the sigmorphon 2016 
shared task out of 8 
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Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

preposition
sense

disambiguation
+

semisup on multilingual data

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. 

Preposition-sense disambiguation is a task of assigning a category to a 
preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmaxܮܯ ௦ܲ௦(߶ ,ݏ ݅ )[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂ = argmaxܮܯ ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:ିଵݓ)ܯܶܵܮ ∘ (:ାଵݓ)ܯܶܵܮ

ݕ = argmaxܮܯ ௦ܲ௦(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 1.53 points: 

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification
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Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂ = argmaxܮܯ ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:ିଵݓ)ܯܶܵܮ ∘ (:ାଵݓ)ܯܶܵܮ

ݕ = argmaxܮܯ ௦ܲ௦(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 1.53 points: 
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+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)
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2. Full Model  

Classify prepositions to senses using an MLP:
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The features and the model:

3. MLP-based model for preposition classification

I met him for lunch
He paid for me
We sat there for hours

Purpose
Beneficiary
Duration
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Abstract

We present a simple method to incorporate
syntactic information about the target lan-
guage in a neural machine translation sys-
tem by translating into linearized, lexical-
ized constituency trees. An experiment on
the WMT16 German-English news trans-
lation task resulted in a similar BLEU
score when compared to a syntax-agnostic
NMT baseline trained on the same dataset.
An analysis of the translations from the
syntax-aware system shows that it per-
forms much more reordering during trans-
lation in comparison to the baseline.

1 Introduction and Model

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2014) has recently became the
state-of-the-art approach to machine translation
(Bojar et al., 2016), while being much simpler than
the previously dominant phrase-based statistical
machine translation (SMT) approaches (Koehn,
2010). NMT models usually do not make ex-
plicit use of syntactic information about the lan-
guages at hand. However, a large body of work
was dedicated to syntax-based SMT (Williams
et al., 2016). One prominent approach to syntax-
based SMT is string-to-tree (S2T) translation (Ya-
mada and Knight, 2001, 2002), in which a source-
language string is translated into a target-language
tree. S2T approaches to SMT help to ensure the
resulting translations have valid syntactic struc-
ture, while also mediating flexible reordering be-
tween the source and target languages. The main
formalism driving current S2T SMT systems is
GHKM rules (Galley et al., 2004, 2006), which are
synchronous transduction grammar (STSG) frag-
ments that are extracted from word-aligned sen-

tence pairs with syntactic trees on one side. The
GHKM translation rules allow flexible reordering
on all levels of the parse-tree.
We suggest that NMT can also benefit the incor-
poration of syntactic knowledge, and propose a
simple method of performing string-to-tree neu-
ral machine translation. Our method is inspired
by recent works in syntactic parsing, which model
trees as sequences (Vinyals et al., 2015; Choe
and Charniak, 2016). Namely, we translate a
source sentence into a linearized, lexicalized con-
stituency tree, as demonstrated in Figure 2. Fig-
ure 1 shows an example output of our neural S2T
model compared to a standard NMT system, as
well as the attention-induced word alignments of
the two models.

Figure 1: Top - a lexicalized tree translation pre-
dicted by the bpe2tree model. Bottom - a trans-
lation for the same sentence from the bpe2bpe
model. The blue lines are drawn according to the
attention weights predicted by each model.

The linearized trees we predict are different
from those in Vinyals et al. (2015) as instead of
having part of speech tags as terminals, they con-
tain the words of the translated sentence. We omit
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Effects effects, playlist, songs, song, singer-
songwriter, singer/songwriter, songwriting,
songwriters, songwriter, music, special-effects,
voice, voices, voiced, voiceover, voice-over,
voiceovers, voice-overs, visual, visuals, visually,
visuales, visualmente, visualize, visualization, vi-
sualized, trailer, trailers, sound, sounds, sounded,
sounding, soundtrack, soundtracks, cinematogra-
phy, shot, shots, well-shot

We categorize a sentence with the theme category
with the highest number of the matched words in
the category list. If there are no matched words,
we categorize the sentence as other.

Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive True

• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
but overall pretty entertaining.”

• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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Effects effects, playlist, songs, song, singer-
songwriter, singer/songwriter, songwriting,
songwriters, songwriter, music, special-effects,
voice, voices, voiced, voiceover, voice-over,
voiceovers, voice-overs, visual, visuals, visually,
visuales, visualmente, visualize, visualization, vi-
sualized, trailer, trailers, sound, sounds, sounded,
sounding, soundtrack, soundtracks, cinematogra-
phy, shot, shots, well-shot

We categorize a sentence with the theme category
with the highest number of the matched words in
the category list. If there are no matched words,
we categorize the sentence as other.

Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive True

• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
but overall pretty entertaining.”

• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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with the highest number of the matched words in
the category list. If there are no matched words,
we categorize the sentence as other.

Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive True

• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
but overall pretty entertaining.”

• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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with the highest number of the matched words in
the category list. If there are no matched words,
we categorize the sentence as other.

Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.
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Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
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• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
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• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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the category list. If there are no matched words,
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Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:
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Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.
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Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
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Descriptive True

• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
but overall pretty entertaining.”

• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
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Here are some examples of sentences that were
generated by our model with the corresponding
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Theme Other
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Writer Type Audience
Subjective True
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• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
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• Good but a little bit slow and boring, I was
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morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”
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Theme Plot
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Subjective False
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• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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with the highest number of the matched words in
the category list. If there are no matched words,
we categorize the sentence as other.

Examples for Generated Sentences

Here are some examples of sentences that were
generated by our model with the corresponding
parameters values:

Parameter Value
Theme Other
Sentiment Negative
Writer Type Audience
Subjective True
Length 11-20 words
Descriptive True

• “My biggest problem with the whole movie
though is that there is nothing new or original
or great in this film.”

• “There are some funny parts but overall I
didn’t like the first few funny parts, but over-
all pretty decent .”

• “My biggest problem with the movie was the
fact that is managed to use the same exact
same well-written line.”

• “Ultimately, I can honestly say that this
movie is full of stupid stupid and stupid
stupid stupid stupid stupid.”

• Good but a little bit slow and boring, I was
looking forward to seeing this movie with my
parents.
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Theme Other
Sentiment Negative
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive True

• “A little bit of a predictable and boring ro-
mantic comedy with a few funny moments
but overall pretty entertaining.”

• “With such a great premise ,Escape From To-
morrow is pretty damn terrible, horrible, and
no exception.”

• “The first half is lazy and stupid, but there’s
a handful of funny moments which are pretty
decent.”

• “There’s no denying the fact that this movie
is such a horrible movie with a few bad mo-
ments.”

• “The last part of the movie just let me down,
but the whole thing is pretty good.”

• “It is a little difficult to follow, but this is a
rare right choice for the respective aspects of
film.”

• “My biggest issue is that the first half is pretty
boring, plodding, and too obvious to be hon-
est.”

Parameter Value
Theme Plot
Sentiment Positive
Writer Type Audience
Subjective False
Length 11-20 words
Descriptive False

• “The movie’s story is based on real life
events, and the characters are even more in-
teresting than the original.”

• “The story is great, the most fun and the most
great film you’ll see in a long time.”

• “The story is the best part of the movie, it’s a
lot of fun to watch.”

• “It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

• “The story was not quite as good as the first
one but it had a pretty good twist ending.”

• “It’s a story that doesn’t take itself too seri-
ously, but it’s a surprisingly good film.”

• “The movie is a perfect love story that leaves
you with a smile on your face for the great
effect.”
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Doing stuff with LSTMs

Goal: derive a representation from unannotated data that is predictive of 
preposition-sense.

Ambiguity differs between languages:
“What action will it take to defuse the crisis and tension in the region?”

French: dans
“These are only available in English, which is totally unacceptable”

French: en

A representation that is predictive of the preposition's translation is likely to be
predictive also of its sense.

Extracting training data
Data in 12 languages from Europarl corpus: Bulgarian, Czech, Danish, German, 
Greek, Spanish, French, Hungarian, Italian, Polish, Romanian and Swedish.

Training example: (The vote will take place tomorrow at 12 p.m. , at, à)

Encode the context as a concatenation of two LSTMs:

Context vector is fed into a language specific MLP for predicting the
target preposition:

Train the context-encoder with all languages together.
The context-encoder and the word embeddings are shared across languages.

Improving Preposition Sense Disambiguation
with Representations Learned from Multilingual Data

Hila Gonen and Yoav Goldberg

Prepositions are very common, very ambiguous and tend to carry different 
meanings in different contexts. 

Preposition-sense disambiguation is a task of assigning a category to a 
preposition in context: 

“You should book a room for 2 nights”         Duration
“For some reason, he is not here yet”         Explanation 
“I went there to get a present for my mother”        Beneficiary

- Can we improve performance by using unannotated data?
- Are translations of prepositions to other languages predictive for this task? 
- How can we use multilingual corpora for learning a representation of the 

context that can be used for sense-disambiguation?

ݕ = argmaxܮܯ ௦ܲ௦(߶ ,ݏ ݅ )[݆]

hilagonen87@gmail.com yoav.goldberg@gmail.com

The vote will take place tomorrow at 12 p.m. 

Le vote aura lieu demain à 12 heures.

1.Motivation

4. Multilingual data

5. Learning a context representation

Concatenate the representation obtained from the context encoder to the
features vector.

Classify prepositions to senses using an MLP network:

ݔݐܿ ,ݏ ݅ - the output vector of the context-encoder
߶ ,ݏ ݅ - the features vector

The error back-propagates also to the context-encoder and to the word 
embeddings.

6. Using the representation for sense classification

̂ = argmaxܮܯ ܲ(ܿݔݐ ,ݏ ݅ )[݆]

,s)ݔݐܿ i) = (ଵ:ିଵݓ)ܯܶܵܮ ∘ (:ାଵݓ)ܯܶܵܮ

ݕ = argmaxܮܯ ௦ܲ௦(ܿݔݐ ,ݏ ݅ ∘ ߶ ,ݏ ݅ )[݆]

The multilingual representation improves accuracy by 1.53 points: 

External word embeddings do not improve results:

7. Results

model accuracy

base 74.75 (73.76-75.88)

+context 74.73 (73.88-75.65)

+context(multilingual) 76.28 (75.65-77.18)

model deps bow none

+context 74.87 (73.65-75.76) 73.91 (72.82-74.47) 74.73 (73.88-75.65)

+context(multilingual) 76.38 (74.82-77.06) 74.71 (73.06-75.41) 76.28 (75.65-77.18)

2. Full Model  

Classify prepositions to senses using an MLP:

,ݏ)߶ ݅) – concatenation of 18 contextual features and the preposition’s embedding

The features and the model:

3. MLP-based model for preposition classification

Abstract

Improving Sequence to Sequence Learning for 
Morphological Inflection Generation
Roee Aharoni and Yoav Goldberg       Yonatan Belinkov

Bar Ilan University NLP Lab                  MIT CSAIL      

The factored sequence to sequence approach (Faruqui et. al., 2016)

• Above two baselines: 
the shared task 
baseline system (ST-
Base) and an 
implementation 
similar to the factored 
model from (Faruqui 
et. al., 2016) (Fact.)

• Got the 2nd/3rd 
place (depending on 
which language) in 
the sigmorphon 2016 
shared task out of 8 
participating teams
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pos=V 

mood=IND

tense=PRS/FUT

gender=FEM

person=3
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it u 0 1 2 3 i 5 ā n

Our first approach, the Bi-Directional Sequence to Sequence model (BS2S):

4. MS2S Network Architecture

2. Previous Work

Morpho-Syntactic Attribute 
Embeddings allows us to train 
joint models over examples that 
share only the part of speech 
rather than all the attributes

3. Novel Methods

pos=V 

mood=IND

tense=PRS/FUT

gender=FEM

person=3

voice=ACT

num=DU 

aspect=IPFV/PFV

f

M o r p h o l o g i c a l Te m p l a t e s 
Instead of training the network to 
predict only a specific character at 
each step, we train the network to 
either predict a character or copy a 
character at a given position in the 
input

Bi-Directional Input Character 
Representation adds more 
focused context when the 
ne twork p red ic ts the nex t 
inflection output

Neural Discriminative String 
Transducer a NN architecture 
maintaining an input pointer 
variable which is dynamically 
p romoted accord ing to the 
network’s decision to “step” 
forward to the next input character

it u t a r j i m ā n

it u 0 1 2 3 i 5 ā n

a

о й step т

step о й step

2,1 2,2 2,3 3,3

6. Results

1. The Task

writing written→past, passive+

سيأكلأكلوا future, singular  +  past, plural← +

מתורגמתתרגם feminine, present, passive, singular← +

5. NDST Network Architecture

Our second approach, the Neural Discriminative String Transducer (NDST):

Our first approach, the Morphological Sequence to Sequence architecture  (MS2S):
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Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)� LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represents
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors u

i

to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.3 For example, the projections for
the first conjunct in Figure 2 are:

3We also experimented with tree-encoders based on recur-
sive networks, which did not work as well.

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<

X/NOUN/dobj/>define/VERB/ROOT/- Y/NOUN/pobj/<as/ADP/prep/<

Path LSTM Term-pair Classifier

~o

p

average
pooling

~v

wx

(x, y)
classification

(softmax)

~v

wy

~v

xy

Embeddings:
lemma
POS
dependency label
direction

Figure 2: An illustration of term-pair classification. Each term-pair is represented by several paths. Each path is a sequence of
edges, and each edge consists of four components: lemma, POS, dependency label and dependency direction. Each edge vector
is fed in sequence into the LSTM, resulting in a path embedding vector ~o

p

. The averaged path vector becomes the term-pair’s
feature vector, used for classification. The dashed ~v

w

x

, ~v

w

y

vectors refer to the integrated network described in Section 3.2.

Term-Pair Classification Each (x, y) term-pair
is represented by the multiset of lexico-syntactic
paths that connected x and y in the corpus, de-
noted as paths(x, y), while the supervision is
given for the term pairs. We represent each (x, y)
term-pair as the weighted-average of its path vec-
tors, by applying average pooling on its path vec-
tors, as follows:

~v
xy

= ~v
paths(x,y) =

P
p2paths(x,y) fp,(x,y)· ~opP
p2paths(x,y) fp,(x,y)

(1)

where f
p,(x,y) is the frequency of p in paths(x, y).

We then feed this path vector to a single-layer net-
work that performs binary classification to decide
whether y is a hypernym of x.

c = softmax(W · ~v
xy

) (2)

c is a 2-dimensional vector whose components
sum to 1, and we classify a pair as positive if
c[1] > 0.5.

Implementation Details To train the network,
we used PyCNN.3 We minimize the cross en-
tropy loss using gradient-based optimization, with
mini-batches of size 10 and the Adam update rule
(Kingma and Ba, 2014). Regularization is applied
by a dropout on each of the components’ embed-
dings. We tuned the hyper-parameters (learning
rate and dropout rate) on the validation set (see the
appendix for the hyper-parameters values).

We initialized the lemma embeddings with the
pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia. We tried both

3https://github.com/clab/cnn

the 50-dimensional and 100-dimensional embed-
ding vectors and selected the ones that yield bet-
ter performance on the validation set.4 The other
embeddings, as well as out-of-vocabulary lemmas,
are initialized randomly. We update all embedding
vectors during training.

3.2 Integrated Network

The network presented in Section 3.1 classifies
each (x, y) term-pair based on the paths that con-
nect x and y in the corpus. Our goal was to im-
prove upon previous path-based methods for hy-
pernymy detection, and we show in Section 6
that our network indeed outperforms them. Yet,
as path-based and distributional methods are con-
sidered complementary, we present a simple way
to integrate distributional features in the network,
yielding improved performance.

We extended the network to take into account
distributional information on each term. In-
spired by the supervised distributional concatena-
tion method (Baroni et al., 2012), we simply con-
catenate x and y word embeddings to the (x, y)
feature vector, redefining ~v

xy

:

~v
xy

= [ ~v
w

x

,~v
paths(x,y), ~v

w

y

] (3)

where ~v
w

x

and ~v
w

y

are x and y’s word embed-
dings, respectively, and ~v

paths(x,y) is the averaged
path vector defined in equation 1. This way, each
(x, y) pair is represented using both the distribu-
tional features of x and y, and their path-based
features.

4Higher-dimensional embeddings seem not to improve
performance, while hurting the training runtime.

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-
pression. Layer L�1 contain pre-trained embeddings. Gaze
prediction and CCG-tag prediction are auxiliary training tasks,
and loss on all tasks are propagated back to layer L0.

Simple and Accurate Dependency Parsing

Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser and Yoav Goldberg

BiLSTMs are State-of-the-art Works for both

Simple & Effective Parsing Accuracies Graph-based & Transition-based

Feature Extractors with Minimal Effort Parsing

Dependency Parsing

The soup , which I expected to be good , was bad

subj

acompdet

rcmod

rel

subj

xcomp

aux acomp

root

Dependency parsing is the task of extracting a dependency tree for a given sentence.

Dependency tree is a directed tree where each word modifies (i.e. modifier) the parent’s

word (i.e. head).

Context Rich Feature
MANY Hand-Crafted Features:

posi, posi+1, posj�1, posj

posi�1, posi, posj�1, posj

posi, posi+1, posj, posj+1

posi�1, posi, posj, posj+1
.

.

.

+
Few Context Rich, Learned,
BiLSTM Features.

Graph-based Parsing Algorithm (Global Optimization)

Inference
parse(sent) = argmax

t2Trees(sent)
score(sent, t)

score(sent, t) ⇡
X

(h,m)2t

���!
score(sent, h,m)

Score Function
���!
score(sent, h,m) = MLP (vh � vm)

vi = BiLSTM(x1:n, i)

Cost Augmented Loss
max(0,1 + score(x, y)�

max

y0 6=y

X

(h,m)2y0

(

���!
score(x, h,m) + I(h,m) 62y

))

First-Order Neural Parser
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Transition-based Parsing Algorithm (Greedy Optimization)
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Results

System Method Representation Emb PTB-YM PTB-SD CTB

UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.9 85.3

This work transition (greedy) 4 BiLSTM vectors – – 92.9 90.7 86.2 84.5

This work transition (greedy) 11 BiLSTM vectors – – 93.2 91.1 86.6 85.0

ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4

Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –

Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 93.1 90.6 86.3 84.7

This work transition (greedy) 4 BiLSTM vectors YES – 93.5 91.4 87.6 86.1

This work transition (greedy) 11 BiLSTM vectors YES – 93.9 91.9 87.7 86.1

Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –

Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –

Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –

Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5

LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –

Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Graph based parser:

• State-of-the-art results without external resources

• First order parer competitive with higher order

• No feature engineering

Transition based parser:

• State-of-the-art results

• Competitive with beam parsers

• Minimal feature engineering
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Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff Try to understand them

I find it really interesting

scratching the surface

reviewers don't care much



Yoav Goldberg 
Dec 2017

Doing stuff 
with LSTMs

Poking at 



Agenda

• Inspecting vector representations of sentences 

• LSTMs and hierarchical syntax 

• Extracting FSAs from RNNs



brief intro to RNNs
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Recurrent Neural Networks

• Very strong models of sequential data. 

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)



Recurrent Neural Networks

• There are different variants (implementations). 

• We'll focus on the interface level.



Recurrent Neural Networks
RNN(s0,x1:n) = sn,yn

xi 2 Rd
in , yi 2 Rd

out , si 2 Rf(d
out

)

• Very strong models of sequential data. 

• Trainable function from n vectors to a single* vector.



Recurrent Neural Networks

• Think of      as "memory".  

• The output vector       depends on all inputs x1:iyi

RNN(s
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) =s
1:n

, y
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i
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2 Rf(d
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)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.
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✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.
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Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

si• Input vectors         , output vector x1:i yi



Recurrent Neural Networks

RNN(s0,x1:n) = sn,yn

xi 2 Rd
in , yi 2 Rd

out , si 2 Rf(d
out

)

RNN(s0,x1:n) = sn,yn

si = R(si�1,xi)

yi = O(si)

• Recursively defined. 

• There's a vector       for every prefix x1:iyi
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The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47



Recurrent Neural Networks
• What are the vectors      good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing. 



Recurrent Neural Networks
• What are the vectors      good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing. 

• But we can train them.



Recurrent Neural Networks
• What are the vectors      good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing. 

• But we can train them.
define function form
define loss



Recurrent Neural Networks
• What are the vectors      good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing. 

• But we can train them.

trained parameters.

define function form
define loss



Recurrent Neural Networks
• What are the vectors      good for?yi

RNN(s
0

,x
1:n

) =s
1:n

, y
1:n

s
i

= R(s
i�1

,x
i

)

y
i

= O(s
i

)

x
i

2 Rd

in , y
i

2 Rd

out , s
i

2 Rf(d

out

)

The functions R and O are the same across the sequence positions, but the RNN keeps
track of the states of computation through the state vector that is kept and being passed
between invocations of R.

Graphically, the RNN has been traditionally presented as in Figure 5.

R,O

x
i

y
i

s
i

s
i�1

✓

Figure 5: Graphical representation of an RNN (recursive).

This presentation follows the recursive definition, and is correct for arbitrary long sequences.
However, for a finite sized input sequence (and all input sequences we deal with are finite)
one can unroll the recursion, resulting in the structure in Figure 6.

s
0

R,O

x
1

y
1

R,O

x
2

y
2

s
1

R,O

x
3

y
3

s
2

✓

R,O

x
4

y
4

s
3

R,O

x
5

y
5

s
4 s

5

Figure 6: Graphical representation of an RNN (unrolled).

While not usually shown in the visualization, we include here the parameters ✓ in order
to highlight the fact that the same parameters are shared across all time steps. Di↵erent

47

• On their own? nothing. 
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trained parameters.
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• On their own? nothing. 

• But we can train them.

trained parameters.

looks complex, and is. 
very strong in practice.

LSTM:
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Defining the loss.

on an outcome.29 For example, consider training an RNN to read the characters of a word
one by one and then use the final state to predict the part-of-speech of that word (this is
inspired by (Ling et al., 2015b)), an RNN that reads in a sentence and, based on the final
state decides if it conveys positive or negative sentiment (this is inspired by (Wang et al.,
2015b)) or an RNN that reads in a sequence of words and decides whether it is a valid
noun-phrase. The loss in such cases is defined in terms of a function of y

n

= O(s
n

), and
the error gradients will backpropagate through the rest of the sequence (see Figure 7).30

The loss can take any familiar form – cross entropy, hinge, margin, etc.
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Figure 7: Acceptor RNN Training Graph.

Encoder Similar to the acceptor case, an encoder supervision uses only the final output
vector, y

n

. However, unlike the acceptor, where a prediction is made solely on the basis
of the final vector, here the final vector is treated as an encoding of the information in the
sequence, and is used as additional information together with other signals. For example, an
extractive document summarization system may first run over the document with an RNN,
resulting in a vector y

n

summarizing the entire document. Then, y
n

will be used together
with other features in order to select the sentences to be included in the summarization.

Transducer Another option is to treat the RNN as a transducer, producing an output for
each input it reads in. Modeled this way, we can compute a local loss signal L

local

(ŷ
i

,y
i

)
for each of the outputs ŷ

i

based on a true label y
i

. The loss for unrolled sequence will
then be: L( ˆy

1:n

,y
1:n

) =
P

n

i=1

L
local

(ŷ
i

,y
i

), or using another combination rather than a
sum such as an average or a weighted average (see Figure 8). One example for such a
transducer is a sequence tagger, in which we take x

i:n

to be feature representations for the
n words of a sentence, and y

i

as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
CCG super-tagging results (Xu et al., 2015).

A very natural use-case of the transduction setup is for language modeling, in which the
sequence of words x

1:i

is used to predict a distribution over the i+ 1th word. RNN based

29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
number of states, making it necessary to rely on a function other than a lookup table for mapping states
to decisions.

30. This kind of supervision signal may be hard to train for long sequences, especially so with the Simple-
RNN, because of the vanishing gradients problem. It is also a generally hard learning task, as we do not
tell the process on which parts of the input to focus.

49

Acceptor: predict something from end state. 
Backprop the error all the way back. 
Train the network to capture meaningful information
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as an input for predicting the tag assignment of word i based
on words 1:i. A CCG super-tagger based on such an architecture provides state-of-the art
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29. The terminology is borrowed from Finite-State Acceptors. However, the RNN has a potentially infinite
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Acceptor: predict something from end state. 
Backprop the error all the way back. 
Train the network to capture meaningful information

the final vector is a good 
"summary" of the sequence



Recurrent Neural Networks

Transducer: predict something from each state. 
Backprop the sum of errors all the way back. 
Train the network to capture meaningful information
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Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).

Encoder - Decoder Finally, an important special case of the encoder scenario is the
Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation y

n

, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
sentence into a vector representation y

n

, and then this state vector is fed into a separate
(decoder) RNN that is trained to predict (using a transducer-like language modeling ob-
jective) the words of the target language sentence based on the previously predicted words
as well as y

n

. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
e↵ective to input the source sentence in reverse, such that x

n

corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t

1

, . . . , t
n

, an encoder RNN is first used to encode the sentence x
1:n

into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x

1:n

to predict the label t
i

at each position i. This approach

50
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"Deep RNNs"

RNN can be stacked 
deeper is better! 

(better how?)
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Figure 10: A 3-layer (“deep”) RNN architecture.

10.4 BI-RNN

A useful elaboration of an RNN is a bidirectional-RNN (BI-RNN) (Schuster & Paliwal, 1997;
Graves, 2008).31 Consider the task of sequence tagging over a sentence x

1

, . . . , x
n

. An RNN
allows us to compute a function of the ith word x

i

based on the past – the words x
1:i

up
to and including it. However, the following words x

i:n

may also be useful for prediction, as
is evident by the common sliding-window approach in which the focus word is categorized
based on a window of k words surrounding it. Much like the RNN relaxes the Markov
assumption and allows looking arbitrarily back into the past, the BI-RNN relaxes the fixed
window size assumption, allowing to look arbitrarily far at both the past and the future.

Consider an input sequence x
1:n

. The BI-RNN works by maintaining two separate
states, sf

i

and sb
i

for each input position i. The forward state sf
i

is based on x
1

,x
2

, . . . ,x
i

,
while the backward state sb

i

is based on x
n

,x
n�1

, . . . ,x
i

. The forward and backward states
are generated by two di↵erent RNNs. The first RNN (Rf , Of ) is fed the input sequence
x
1:n

as is, while the second RNN (Rb, Ob) is fed the input sequence in reverse. The state
representation s

i

is then composed of both the forward and backward states.

The output at position i is based on the concatenation of the two output vectors
y
i

= [yf

i

;yb

i

] = [Of (sf
i

);Ob(sb
i

)], taking into account both the past and the future. The
vector y

i

can then be used directly for prediction, or fed as part of the input to a more
complex network. While the two RNNs are run independently of each other, the error gra-
dients at position i will flow both forward and backward through the two RNNs. A visual
representation of the BI-RNN architecture is given in Figure 11.

The use of BI-RNNs for sequence tagging was introduced to the NLP community by
Irsoy and Cardie (2014).

10.5 RNNs for Representing Stacks

Some algorithms in language processing, including those for transition-based parsing (Nivre,
2008), require performing feature extraction over a stack. Instead of being confined to

31. When used with a specific RNN architecture such as an LSTM, the model is called BI-LSTM.
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seq2seq models

Encoder-decoder (seq2seq):  
Encoder-RNN encodes the sentence. 
Decoder RNN transduces something back.
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Figure 9: Encoder-Decoder RNN Training Graph.

was used in (Filippova, Alfonseca, Colmenares, Kaiser, & Vinyals, 2015) to model sentence
compression by deletion.

10.3 Multi-layer (stacked) RNNs

RNNs can be stacked in layers, forming a grid (Hihi & Bengio, 1996). Consider k RNNs,

RNN
1

, . . . , RNN
k

, where the jth RNN has states sj
1:n

and outputs yj

1:n

. The input for the
first RNN are x

1:n

, while the input of the jth RNN (j � 2) are the outputs of the RNN

below it, yj�1

1:n

. The output of the entire formation is the output of the last RNN, yk

1:n

.
Such layered architectures are often called deep RNNs. A visual representation of a 3-layer
RNN is given in Figure 10.

While it is not theoretically clear what is the additional power gained by the deeper
architecture, it was observed empirically that deep RNNs work better than shallower ones
on some tasks. In particular, Sutskever et al (2014) report that a 4-layers deep architec-
ture was crucial in achieving good machine-translation performance in an encoder-decoder
framework. Irsoy and Cardie (2014) also report improved results from moving from a one-
layer BI-RNN to an architecture with several layers. Many other works report result using
layered RNN architectures, but do not explicitly compare to 1-layer RNNs.
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Auto-Encoder

Encoder-decoder (seq2seq):  
Encoder encodes a sentence. 
Decoder tries to reconstruct it.
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Abstract

Natural language generation of coherent
long texts like paragraphs or longer doc-
uments is a challenging problem for re-
current networks models. In this paper,
we explore an important step toward this
generation task: training an LSTM (Long-
short term memory) auto-encoder to pre-
serve and reconstruct multi-sentence para-
graphs. We introduce an LSTM model that
hierarchically builds an embedding for a
paragraph from embeddings for sentences
and words, then decodes this embedding
to reconstruct the original paragraph. We
evaluate the reconstructed paragraph us-
ing standard metrics like ROUGE and En-
tity Grid, showing that neural models are
able to encode texts in a way that preserve
syntactic, semantic, and discourse coher-
ence. While only a first step toward gener-
ating coherent text units from neural mod-
els, our work has the potential to signifi-
cantly impact natural language generation
and summarization1.

1 Introduction

Generating coherent text is a central task in natural
language processing. A wide variety of theories
exist for representing relationships between text
units, such as Rhetorical Structure Theory (Mann
and Thompson, 1988) or Discourse Representa-
tion Theory (Lascarides and Asher, 1991), for ex-
tracting these relations from text units (Marcu,
2000; LeThanh et al., 2004; Hernault et al., 2010;
Feng and Hirst, 2012, inter alia), and for extract-
ing other coherence properties characterizing the
role each text unit plays with others in a discourse
(Barzilay and Lapata, 2008; Barzilay and Lee,

1Code for models described in this paper are available at
www.stanford.edu/

˜

jiweil/.

2004; Elsner and Charniak, 2008; Li and Hovy,
2014, inter alia). However, applying these to text
generation remains difficult. To understand how
discourse units are connected, one has to under-
stand the communicative function of each unit,
and the role it plays within the context that en-
capsulates it, recursively all the way up for the
entire text. Identifying increasingly sophisticated
human-developed features may be insufficient for
capturing these patterns. But developing neural-
based alternatives has also been difficult. Al-
though neural representations for sentences can
capture aspects of coherent sentence structure (Ji
and Eisenstein, 2014; Li et al., 2014; Li and Hovy,
2014), it’s not clear how they could help in gener-
ating more broadly coherent text.

Recent LSTM models (Hochreiter and Schmid-
huber, 1997) have shown powerful results on gen-
erating meaningful and grammatical sentences in
sequence generation tasks like machine translation
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015) or parsing (Vinyals et al., 2014).
This performance is at least partially attributable
to the ability of these systems to capture local
compositionally: the way neighboring words are
combined semantically and syntactically to form
meanings that they wish to express.

Could these models be extended to deal with
generation of larger structures like paragraphs or
even entire documents? In standard sequence-
to-sequence generation tasks, an input sequence
is mapped to a vector embedding that represents
the sequence, and then to an output string of
words. Multi-text generation tasks like summa-
rization could work in a similar way: the sys-
tem reads a collection of input sentences, and
is then asked to generate meaningful texts with
certain properties (such as—for summarization—
being succinct and conclusive). Just as the local
semantic and syntactic compositionally of words
can be captured by LSTM models, can the com-
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3.4 Model 3: Hierarchical LSTM with
Attention

Attention models adopt a look-back strategy by
linking the current decoding stage with input sen-
tences in an attempt to consider which part of the

input is most responsible for the current decoding
state. This attention version of hierarchical model
is inspired by similar work in image caption gen-
eration and machine translation (Xu et al., 2015;
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• Train a model to solve them, and see how well it 
does. 

• A mechanism for comparing different sentence 
representations.
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• What information is encoded in the vector? 

• Let's ask it! 

• Design tasks to query specific kinds of information. 

• Train a model to solve them, and see how well it 
does. 

• A mechanism for comparing different sentence 
representations.

If we can't train a classifier
to act on information from a vector

is the information really there?



What's in a sentence?
To fully reconstruct a sentence, we need to know: 

• How many words? 

• Which words? 

• What order? 

Compare different sentence representations based 
on their preservation of these properties.
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CBOW (Continuous-Bag-of-Words)

• Represent each word in the sentence as a vector (word2vec) 
• The average of these vectors is the sentence vector

+ + + + + =)( /6

The fox jumped over the fence sentence vector
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reviewer 2: 

The paper reads very well, but  
a) I do not understand the motivation, and 
b) the experiments seem flawed.

The average over CBOW word embeddings should 
never encode for sentence length. The fact 
that you learn reasonably well with 
these representations, suggest overfitting. 
This may well be, since Wikipedia 
contains tons of duplicate or near-duplicate 
sentences.
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Figure 3: Content accuracy vs. sentence length for selected
models.

6.3 Word Order Experiments

Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

English sentences
Synthetic sentences
with random words
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tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.
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coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
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To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.
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An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.
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Figure 4 shows the performance of the different
models on the order test. The LSTM encoders are
very capable of encoding word order, with LSTM-
1000 allowing the recovery of word order in 91% of
the cases. Similar to the length test, LSTM order
prediction accuracy is only loosely correlated with
BLEU scores. It is worth to notice that increasing
the representation size helps the LSTM-encoder to
better encode order information.

Figure 4: Order accuracy vs. embedding size for different
models; ED BLEU scores given for reference.

Surprisingly, the CBOW encodings manage to
reach an accuracy of 70% on the word order task,
20% above the baseline. This is remarkable as, by
definition, the CBOW encoder does not attempt to
preserve word order information. One way to ex-
plain this is by considering distribution patterns of
words in natural language sentences: some words
tend to appear before others. In the next section we
analyze the effect of natural language on the differ-
ent models.

7 Importance of “Natural Languageness”
Natural language imposes many constraints on sen-
tence structure. To what extent do the different en-
coders rely on specific properties of word distribu-
tions in natural language sentences when encoding
sentences?

To account for this, we perform additional exper-
iments in which we attempt to control for the effect
of natural language.

How can CBOW encode sentence length? Is the
ability of CBOW embeddings to encode length re-
lated to specific words being indicative of longer or
shorter sentences? To control for this, we created a
synthetic dataset where each word in each sentence
is replaced by a random word from the dictionary
and re-ran the length test for the CBOW embeddings
using this dataset. As Fig. 5 shows, this only leads
to a slight decrease in accuracy, indicating that the
identity of the words is not the main component in
CBOW’s success at predicting length.

Figure 5: Length accuracy for different CBOW sizes on nat-
ural and synthetic (random words) sentences.

An alternative explanation for CBOW’s ability to
encode sentence length is given by considering the
norms of the sentence embeddings. Indeed, Fig. 6
shows that the embedding norm decreases as sen-
tences grows longer. We believe this is one of the
main reasons for the strong CBOW results.

Figure 6: Average embedding norm vs. sentence length for
CBOW with an embedding size of 300.

How does CBOW 
 encode length?

(Why?)
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

auto-encoder LSTM  
does not really care what it encodes. 

a generic sequence encoder.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.
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How does CBOW encode word order? The sur-
prisingly strong performance of the CBOW model
on the order task made us hypothesize that much
of the word order information is captured in general
natural language word order statistics.

To investigate this, we re-run the word order tests,
but this time drop the sentence embedding in train-
ing and testing time, learning from the word-pairs
alone. In other words, we feed the network as input
two word embeddings and ask which word comes
first in the sentence. This test isolates general word
order statistics of language from information that is
contained in the sentence embedding (Fig. 7).

Figure 7: Order accuracy w/ and w/o sentence representation
for ED and CBOW models.

The difference between including and removing
the sentence embeddings when using the CBOW
model is minor, while the LSTM-ED suffers a sig-
nificant drop. Clearly, the LSTM-ED model encodes
word order, while the prediction ability of CBOW
is mostly explained by general language statistics.
However, CBOW does benefit from the sentence
to some extent: we observe a gain of ⇠3% accu-
racy points when the CBOW tests are allowed ac-
cess to the sentence representation. This may be ex-
plained by higher order statistics of correlation be-
tween word order patterns and the occurrences of
specific words.

How important is word order for encoding sen-
tences? To what extent are the models trained to
rely on natural language word order when encod-
ing sentences? To control for this, we create a syn-
thetic dataset, PERMUTED, in which the word order
in each sentence is randomly permuted. Then, we
repeat the length, content and order experiments us-
ing the PERMUTED dataset (we still use the original
sentence encoders that are trained on non-permuted

sentences). While the permuted sentence represen-
tation is the same for CBOW, it is completely differ-
ent when generated by the encoder-decoder.

Results are presented in Fig. 8. When consider-
ing CBOW embeddings, word order accuracy drops
to chance level, as expected, while results on the
other tests remain the same. Moving to the LSTM
encoder-decoder, the results on all three tests are
comparable to the ones using non-permuted sen-
tences. These results are somewhat surprising since
the models were originally trained on “real”, non-
permuted sentences. This indicates that the LSTM
encoder-decoder is a general-purpose sequence en-
coder that for the most part does not rely on word
ordering properties of natural language when en-
coding sentences. The small and consistent drop in
word order accuracy on the permuted sentences can
be attributed to the encoder relying on natural lan-

(a) Length test.

(b) Content test.

(c) Order test.

Figure 8: Results for length, content and order tests on natural
and permuted sentences.

auto-encoder LSTM  
does not really care what it encodes. 

a generic sequence encoder.

nat-lang information is in the decoder.
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Does it Learn to Represent English  

or Just Sequences?

Content OrderLength

Skip-thought encoders do care 
about the sequence they encode



What did we learn?
• LSTM-encoder vectors encode length. 

• If you care about word identity, prefer CBOW. 

• If you care about word order, use LSTM. 

• Can recover quite a bit of order also from CBOW. 

• LSTM Encoder doesn't rely on language-naturalness 

• Skip-thoughts encoder does rely on it.
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Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).
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The case for Syntax

the boy kicks the ball
the boys kick the ball

• Some natural-language phenomena are indicative 
of hierarchical structure. 

• For example, subject verb agreement. 



The case for Syntax

the boy with the white shirt with the blue collar kicks the ball
the boys with the white shirts with the blue collars kick the ball

• Some natural-language phenomena are indicative 
of hierarchical structure. 

• For example, subject verb agreement. 



The case for Syntax

the boy (with the white shirt (with the blue collar)) kicks the ball
the boys (with the white shirts (with the blue collars)) kick the ball

• Some natural-language phenomena are indicative 
of hierarchical structure. 

• For example, subject verb agreement. 



Can a sequence LSTM 
learn agreement?

some prominent figures in the history of philosophy who have 
defended moral rationalism are plato and immanuel kant .



Can a sequence LSTM 
learn agreement?

some prominent figures in the history of philosophy who have 
defended moral  NN   are plato and immanuel kant .

replace rare words with their POS



Can a sequence LSTM 
learn agreement?

some prominent figures in the history of philosophy who have 
defended moral  NN   are plato and immanuel kant .

choose a verb with a subject



Can a sequence LSTM 
learn agreement?

some prominent figures in the history of philosophy who have 
defended moral  NN  ____

cut the sentence at the verb



Can a sequence LSTM 
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have 
defended moral  NN  ____

binary prediction task



Can a sequence LSTM 
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Can a sequence LSTM 
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have 
defended moral  NN  ____



Can a sequence LSTM 
learn agreement?

plural or singular?

some prominent figures in the history of philosophy who have 
defended moral  NN  ____

Need to learn the concept of number.
in order to answer:

Need to identify the subject (ignoring irrelevant words)



Somewhat Harder Task



Somewhat Harder Task

some prominent figures in the history of philosophy who have 
defended moral  NN   are plato and immanuel kant .

choose a verb with a subject



Somewhat Harder Task

some prominent figures in the history of philosophy who have 
defended moral  NN   are plato and immanuel kant .

choose a verb with a subject

some prominent figures in the history of philosophy who have 
defended moral  NN   is plato and immanuel kant .

and flip its number.



Somewhat Harder Task

some prominent figures in the history of philosophy who have 
defended moral  NN   are plato and immanuel kant .

some prominent figures in the history of philosophy who have 
defended moral  NN   is plato and immanuel kant .

V

X

can the LSTM learn to 
distinguish good from bad sentences?



Can a sequence LSTM 
learn agreement?

LSTMs learn agreement remarkably well.

predicts number with 99% accuracy.
...but most examples are very easy  

(look at last noun).



(a) (b) (c)

(d) (e) (f)

Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Figure 3: Embeddings of singular nouns (in red) and
plural nouns (in blue) in the LSTM number predic-
tion network, projected onto the first two principal
components of the embedding space.

Figure 4

Figure 5: Targeted training: last intervening (note
that the “none” category is missing – all dependencies
had at least one intervening noun).

4 Targeted training

The network’s degraded performance on dependen-
cies with agreement attractors showed that it did not
extract the correct generalization from the training
data. At the same time, its overall accuracy was very
high. This suggests that most dependencies in the
test set do not contain attractors that can trip up the
network. An analysis of the corpus confirms this hy-
pothesis: the majority of dependencies in language
do not have any attractors at all, and there is a very
small number of dependencies that have multiple at-
tractors (Figure 4). As such, the network can achieve
high performance using heuristics that break in diffi-
cult cases.

The most natural training regime includes sentence
types in the training set in proportion to their fre-
quency in the language, as we did in our first exper-
iments and as is the case when an RNN language
model is trained on a corpus. Given the skew in the
distribution, however, we repeated our verb number
prediction experiment, this time training the model
only on dependencies that had at least one noun that
intervened between the subject and the verb (either
an agreement attractor or a noun with the same num-
ber as the subject). Our methodology was identical,
with the exception of doubling the proportion of train-
ing sentences in the split, since the full corpus was
smaller (226K dependencies).

The overall error rate was low, but higher than
before (2.5% compared to 0.9%). Figure 5 shows
that the errors are more balanced between attractors
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Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.
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order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:
One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12
https://github.com/tensorflow/models/

tree/master/lm_1b
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Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-
pendencies, and a more direct form of training signal

is required.

Comparison to a large-scale language model:
One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resent the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units
as our LM; at 1.04 billion parameters it has almost

12
https://github.com/tensorflow/models/

tree/master/lm_1b

Google's beast LM  
does better than ours 
but still struggles 
considerably.
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noun compounds can be tricky

reaches 60% (Figure 4e).

Qualitative analysis: We manually examined a
sample of 200 cases in which the majority of the
20 runs of the number prediction network made the
wrong prediction. There were only 8890 such depen-
dencies (about 0.6%). Many of those were straight-
forward agreement attraction errors; others were dif-
ficult to interpret. We mention here three classes of
errors that can motivate future experiments.

The networks often misidentified the heads of
noun-noun compounds. In (17), for example, the
models predict a singular verb even though the num-
ber of the subject conservation refugees should be
determined by its head refugees. This suggests that
the networks didn’t master the structure of English
noun-noun compounds.14

(17) Conservation refugees live in a world col-
ored in shades of gray; limbo.

(18) Information technology (IT) assets com-
monly hold large volumes of confidential
data.

Some verbs that are ambiguous with plural nouns
seem to have been misanalyzed as plural nouns and
consequently act as attractors. The models predicted
a plural verb in the following two sentences even
though neither of them has any plural nouns, possibly
because of the ambiguous verbs drives and lands:

(19) The ship that the player drives has a very
high speed.

(20) It was also to be used to learn if the area
where the lander lands is typical of the sur-
rounding terrain.

Other errors appear to be due to difficulty not in
identifying the subject but in determining whether it
is plural or singular. In Example (22), in particular,
there is very little information in the left context of
the subject 5 paragraphs suggesting that the writer
considers it to be singular:

(21) Rabaul-based Japanese aircraft make three
dive-bombing attacks.

14The dependencies are presented as they appeared in the
corpus; the predicted number was the opposite of the correct one
(e.g., singular in (17), where the original is plural).

(22) The lead is also rather long; 5 paragraphs
is pretty lengthy for a 62 kilobyte article.

The last errors point to a limitation of the number
prediction task, which jointly evaluates the model’s
ability to identify the subject and its ability to assign
the correct number to noun phrases.

8 Related Work

The majority of NLP work on neural networks eval-
uates them on their performance in a task such as
language modeling or machine translation (Sunder-
meyer et al., 2012; Bahdanau et al., 2015). These
evaluation setups average over many different syn-
tactic constructions, making it difficult to isolate the
network’s syntactic capabilities.

Other studies have tested the capabilities of RNNs
to learn simple artificial languages. Gers and Schmid-
huber (2001) showed that LSTMs can learn the
context-free language anbn, generalizing to ns as
high as 1000 even when trained only on n 2
{1, . . . , 10}. Simple recurrent networks struggled
with this language (Rodriguez et al., 1999; Rodriguez,
2001). These results have been recently replicated
and extended by Joulin and Mikolov (2015).

Elman (1991) tested an SRN on a miniature lan-
guage that simulated English relative clauses, and
found that the network was only able to learn the
language under highly specific circumstances (El-
man, 1993), though later work has called some of his
conclusions into question (Rohde and Plaut, 1999;
Cartling, 2008). Frank et al. (2013) studied the ac-
quisition of anaphora coreference by SRNs, again
in a miniature language. Recently, Bowman et al.
(2015) tested the ability of LSTMs to learn an artifi-
cial language based on propositional logic. As in our
study, the performance of the network degraded as
the complexity of the test sentences increased.

Karpathy et al. (2016) present analyses and visual-
ization methods for character-level RNNs. Kádár et
al. (2016) and Li et al. (2016) suggest visualization
techniques for word-level RNNs trained to perform
tasks that aren’t explicitly syntactic (image caption-
ing and sentiment analysis).

Early work that used neural networks to model
grammaticality judgments includes Allen and Sei-
denberg (1999) and Lawrence et al. (1996). More re-
cently, the connection between grammaticality judg-
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Relative clauses are hard.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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Reduced relative clauses are harder.

Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively ambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows
a particularly clear pattern: it tracks the number of
the main clause subject throughout the PP modifier,
resets when it reaches the relativizer that which intro-
duces the RC modifier, and then switches to tracking
the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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humans also fail much more on reduced relatives.



The agreement experiment: 
recap

• We wanted to show LSTMs can't learn hierarchy. 

• --> We sort-of failed.

• LSTMs learn to cope with natural-language 
patterns that exhibit hierarchy, based on 
minimal and indirect supervision. 

• But some sort of relevant supervision is required.



Agreement Prediction -- 
What's next

• Many ways to extend this: 

• More languages 

• More phenomena 

• Make it fail! 

• and then improve it.



Extracting FSAs from RNNs

what do trained LSTM acceptors encode?





RNN acceptors as 
State Machines
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Figure 8: Transducer RNN Training Graph.

language models are shown to provide much better perplexities than traditional language
models (Mikolov et al., 2010; Sundermeyer, Schlüter, & Ney, 2012; Mikolov, 2012).

Using RNNs as transducers allows us to relax the Markov assumption that is tradition-
ally taken in language models and HMM taggers, and condition on the entire prediction
history. The power of the ability to condition on arbitrarily long histories is demonstrated
in generative character-level RNN models, in which a text is generated character by charac-
ter, each character conditioning on the previous ones (Sutskever, Martens, & Hinton, 2011).
The generated texts show sensitivity to properties that are not captured by n-gram language
models, including line lengths and nested parenthesis balancing. For a good demonstration
and analysis of the properties of RNN-based character level language models, see (Karpathy,
Johnson, & Li, 2015).
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Encoder-Decoder framework (Cho, van Merrienboer, Bahdanau, & Bengio, 2014a; Sutskever
et al., 2014). The RNN is used to encode the sequence into a vector representation y
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, and
this vector representation is then used as auxiliary input to another RNN that is used as
a decoder. For example, in a machine-translation setup the first RNN encodes the source
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, and then this state vector is fed into a separate
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jective) the words of the target language sentence based on the previously predicted words
as well as y
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. The supervision happens only for the decoder RNN, but the gradients are
propagated all the way back to the encoder RNN (see Figure 9).

Such an approach was shown to be surprisingly e↵ective for Machine Translation (Sutskever
et al., 2014) using LSTM RNNs. In order for this technique to work, Sutskever et al found it
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corresponds to the first word
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. The supervision happens only for the decoder RNN, but the gradients are
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. The supervision happens only for the decoder RNN, but the gradients are
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e↵ective to input the source sentence in reverse, such that x

n

corresponds to the first word
of the sentence. In this way, it is easier for the second RNN to establish the relation be-
tween the first word of the source sentence to the first word of the target sentence. Another
use-case of the encoder-decoder framework is for sequence transduction. Here, in order to
generate tags t

1

, . . . , t
n

, an encoder RNN is first used to encode the sentence x
1:n

into fixed
sized vector. This vector is then fed as the initial state vector of another (transducer) RNN,
which is used together with x

1:n

to predict the label t
i

at each position i. This approach

50

state input 
symbol

new 
state

accept/reject

very similar to FSA 
unfortunately the states are continuous vectors





Learning  
Finite State Automata

• L* algorithm

• FSAs are learnable from "minimally adequate teacher" 

• Membership queries  

• Equivalence queries

"does this word belong in the language?"

"does this automaton represent the language?"



Game Plan

• Train an RNN 

• Use it as a Teacher in the L* algorithm 

•  L* learns the FSA represented by the RNN



RNN as  
Minimally Adequate Teacher

Membership Queries

Equivalence Queries

Easy. Just run the word through the RNN.

Hard. Requires some trickery. 



Answering  
Equivalence Queries

• Map RNN states to discrete states, forming an FSA 
abstraction of the RNN. 

• Compare L* Query FSA to RNN-Abstract-FSA. 

• Different? 

• Maybe state-mapping is wrong. Refine the 
mapping. 

• Maybe L* FSA is wrong, return a counter example. 



Answering  
Equivalence Queries

• Compare L* Query FSA to RNN-Abstract-FSA. 

• Different? 

• Maybe state-mapping is wrong. Refine the 
mapping. 

• Maybe L* FSA is wrong, return a counter 
example. 

=??



Answering  
Equivalence Queries

• Conflict? 

• Maybe state-mapping is wrong.  
If so: refine the mapping. 

• Maybe L* FSA is wrong.  
If so: return a counter example. 



Some Results
• Many random FSAs:

• 5 or 10 states, alphabet sizes of 3 or 5 

• LSTM/GRU with 50, 100, 500 dimensions. 

• The FSAs were learned well by LSTM / GRU 

• And recovered well by L*.



"lists or dicts"

• F 

• S 

• [F,S,0,F,N,T] 

• {S:F,S:F,S:0,S:T,S:S,S:N}

alphabet: F S 0 N T , : { } [ ]



"lists or dicts" perfect!



Balanced Parenthesis

(a((ejka((acs))(asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ( )
nesting level up to 8.
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Balanced Parenthesis
not quite right

final automaton:



"Emails"
• bla12@abc.com, ahjlkoo@jjjgs.net   

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])
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• bla12@abc.com, ahjlkoo@jjjgs.net   

[a-z][a-z0-9]*@[a-z0-9]+\.(com|net|co\.[a-z][a-z])
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"Emails"

LSTM has 100% accuracy on both train and dev (and test)

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some examples it found:

25.net
5x.nem
2hs.net



• We can extract FSAs from RNNs

• ... if the RNN indeed captured a regular structure 

• ... and in many cases the representation 
captured by the RNN is much more complex 
(and wrong!) than the actual concept class.



• Much more to do:

• scale to larger FSAs and alphabets 

• scale to non-regular languages 

• apply to "real" language data 

• ....



To summarize (the talk)

• LSTM are very powerful 

• We know how to use them. 

• We don't know enough about their power and 
limitations. 

• We should try to understand them better.



Understanding LSTMs
• Our humble start

• Experiments for understanding sentence 
representations. 

• LSTMs and English subject-verb agreement. 

• Extracting FSAs from trained LSTMs. 

• Still much to do. Help us do it.



thanks for listening


