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Deep Learning
Revolution

IT LEARNS ON ITS OWN.

IT WORKS LIKE THE BRAIN.

IT CAN DO ANYTHING.
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My experience
with Deep Learning for Language

"I'M SORRY DAVE,
I'Mm AFRAID I CAN'T DO THAT."

(not in the scary sense)
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My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.
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My experience
with Deep Leammg for Language

: care to optimize

* Notsoeasy parameters like crazy, |

. With Feed-fl 1dont have the resources |, . q4cis W/
human eng nor the panence

* On 20-newsgroups, Na|veBayes+TfIdf wins over deep
Feed-forward-nets and ConvNets.
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My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed—forvvard-nets and ConvNets




word2vec

dog = (0.12,-0.32,0.92,0.43,-0.3 ...)
cat = (0.15,-0.29,0.90,0.39,-0.32 ...)

chair = (0.8,0.9,-0.76,0.29,0.52 ...)

get a |V|xd matrix W where each
row is a vector for a word




>

dog

» cat, dogs, dachshund, rabbit, puppy, poodle, rottweller,
mixed-breed, doberman, pig

sheep

» cattle, goats, cows, chickens, sheeps, hogs, donkeys,
herds, shorthorn, livestock

november

» october, december, april, june, february, july, september,
january, august, march

jerusalem

» tiberias, jaffa, haifa, israel, palestine, nablus, damascus
katamon, ramla, safed

teva

» pfizer, schering-plough, novartis, astrazeneca,
glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia



>

dog

» cat, dogs, dachshund, rabbit, puppy, poodle, rottweller,
mixed-breed, doberman, pig

sheep

. cattle, | .
herds| Plug these as alternative

november! iNputs to almost any model;

» octobd and get a few points boost §, sepiember,
januar in accuracy |

jerusalem|

> tiberia, afa, ifa isrl pali, alus, damascus
katamon, ramla, safed

teva

» pfizer, schering-plough, novartis, astrazeneca,
glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme,
pharmacia

E;,donkeys,
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My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed—forvvard-nets and ConvNets
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My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.
 Not so easy to get good results.

* With Feed-forward nets, hard to beat linear models w/
human engineered feature combinations.

* On 20-newsgroups, NaiveBayes+Ttldf wins over deep
Feed-forward-nets and ConvNets.

. Seml sup Ieammg sort-of easy vv|th vvord embeddmgs
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My experience
with Deep Learning for Language

* With proper tools, easy to produce "innovative” models.

very
. N@P’S‘O‘ easy to get good results.

* With ’:'?- -forward nets, hard to beat linear models w/

human engineered feature combinations.

» On 20-newsgtoups, NaiveBayes+Tfldf wins over deep
Feed-forward-nets and ConvNets.

. Seml sup Ieammg 'a_\ easy vv|th vvord embeddmgs




3. The BiLSTM Hegemony

To a first approximation,
the de facto consensus in NLP in 2017 is
that no matter what the task,
you throw a BILSTM at it, with
attention if you need information flow

Chris Manning
April 2017




 Doing stuff with LSTMs
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Doing stuft with LSTMs

LSTMs are very capabple learners

Use them to ild stuff
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==
NLP

Doing stuft with LSTMs

LSTMs are very capable learners

Use them to ild stuff

Try to do it in an interesting way
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" Doing stuff with LSTMs

LSTMs are very capable learners

A Yn Compression

.. Multitask
Gaze

e CCG-tags

LY .“ % L2

Use them to build stuff

chunking /
tagging/ .
compression

multi-task learning
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Doing stuft with LSTMs

LSTMs are very capable learners

syntactic
parsing
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Doing stuft with LSTMs

The soup , which | expected to be good , was bad

syntactic ‘

parsing | Jy R J’ \ }

sb I




Doing stuft with LSTMs

@J

subJ
( rcmod

rel xcom
aux acomp acomp|
v v

The soup , which | expected to be good , was bad

Vthe \ Tomamm Vfox Vj uuuuu V*
syntact|c ﬁ <concaf> <concat> concat> ﬁ
b b b b b
4 3 2

parsing

det

<—% LSTMb <—4% LSTMb dﬁ LSTM?Y, @ LSTMb % LSTMb s

e e ""A"" e e
f £ f f £
1 Y2 3 4 Y5
R Poodooo( 7 @oodooor # pocdeceoy | eoodeoog 7 @oodooop f

———30 i 1T | LSTMY | =22 LT MY |5 [T M |4 LT M | ——5—
____‘___l
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Doing stuft with LSTMs

best parser in the world

(now second place, beat by Stanford using same arch)
m |root|

g o A
rcmod

(AT, I
[aux [acomp] acomp
A !

The soup , which | expected to be good , was bad

syntactic A A

parsing

det

b |_ - - b 1 1 1 1 - -0 b
S LT MY <A [§T MY 3 [ST MY P2 ——i [STMP [+ —— [ST M 20—
-— - -] - - _‘_ p—| - - _“_ p—| -— - -]

L e ool
A A
f £ f f
1 Y2 3 4
R Poodooo( 7 @oodooor f -7 f -7

1 1 1 1 f |_______I f
———0 s LTS = | LSTM | =2 LST MY = | —8 [ ST MY —|— 4+ [ST M/ | —5—
-1

Rapp— |
| L
L<t 3 w1 L< x jumped T Xy
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" Doing stuff with LSTMs

LSTMs are very capable learners

Use them to build stuff

Embeddings:

1 AT

® POS O) i

dependency label ! O |

® direction average ;
hypernymy G pooting 1O (@)

d etect i o n I I I & @ classification
(softmax)
Coceee Ccceee (Ciceee® & 9
X/NQUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/< O O
U Q/\

o

I I [ [ o

( 000)( 000)( 000)( 000) O v,

X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<

Path LSTM Term-pair Classifier
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 Doing stuff with LSTMs

"tuvalu” Is a country
> ‘ninjaken” is a weapon

‘chlamydophila’ is a bacteria

T lemma T
® POS Ol vu,
dependency label ! O 0
® direction average ;
hypernymy 0 pooting (O (@)
d etect i o n I I I & @ classification
(softmax)
Coceee Ccceee (Ciceee® & 9
X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/< O O
U Q/\
Qr
I I [ [ o
( 000)( 000)( 000)( 000) O v,
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/< R
Path LSTM Term-pair Classifier
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" Doing stuff with LSTMs

"Outstanding
LSTMs are very capable learners __ raper

[ "HypeNET" |

Use them to build stuff

Embeddings:
1 B
® POS | 0 v
dependency label ! O
® direction average
hypernymy 0 pooting D) (@)
detection | T O [SS) oo
| softmax
( 000 ( 000 ( 000 S & ®
X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/< O||| S 0O
I
WO
I I [ [ o
( 000)( 000)( 000)( 000) O v,
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<
Path LSTM Term-pair Classifier




Doing stuft with LSTMs

LSTMs are very capable learners

Use them to build stuff

coordination
boundary
prediction * Euclidean Distance
L o
T V*P i T %
VB NP ‘ | L . VB NP vp
N R | P \ VP |
cut PRP$ NNS \ | NP i take NNS NP
. & = é‘ voa L et S RN N B voL LA N g 2w e e
their ris ks ‘ E,. = = PRPSB C:'Dr % = o) 5 — | % Z = = = : profits ke gz_‘ o = | 8 z 5 5 —
thcir :. _;'g risks 2 w2 o profits E w2
wn



B I U
==

 Doing stuff with LSTMs

he will attend the meeting and present the results on Tuesday

coordination
boundary
prediction | Euclidean Distance - %#

VB NP |
| P VP
cut PRP$ NNS \

| | vE A 2 é I\ o4 2 A 2 A oA % 2 A 2 | VB A 2 2 A A 2 2 2 A
heir  risks | NNS 3. fit \ -t NNS
their risks cut g o o ';U PRP$ (:'Dr % g ;U ) = .‘ % Z g = g p take g:_. volllaw) ;U \. 8 z o T .
th = ;g risks AN, o profits E wn
95}

53
£
>§
g égz
o wﬂ
.
-5-c
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 Doing stuff with LSTMs

he will attend the meeting and present the results on Tuesday

coordination
boundary
prediction | Euclidean Distance - %#

VB NP |
| P VP
cut PRP$ NNS \

| | vE A 2 é I\ o4 2 A 2 A oA % 2 A 2 | VB A 2 2 A A 2 2 2 A
heir  risks | NNS 3. fit \ -t NNS
their risks cut g o o ';U PRP$ (:'Dr % g ;U ) = .‘ % Z g = g p take g:_. volllaw) ;U \. 8 z o T .
th = ;g risks AN, o profits E wn
95}

53
£
>§
g égz
o wﬂ
.
-5-c



Doing stuft with LSTMs

he will attend the meeting and present the results on Tuesday

N
ne will attend the meeting on Tuesday

ne will present the results on Tuesday

coordination

| " boundary
Y pl"ediction q Euchdean Distance
VP . vp
— | )
VB/\NP | i ‘ VB NP i |
\ N VP R ‘ b |
e PRPS N take NNS
ctPR‘P$1\1‘\IS V‘B éééA NP 4 42 2 ‘ :2242 VB 4224 ‘ %2224
leir  risks | = =) -
their risk cut E,. - o ~ PR‘P$ c:'or % av) av) \ % Z O . av take QW)‘ o o el \ 8 Z < = =
- Z > e S, Z
»n
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Doing stuft with LSTMs

LSTMs are very capable learners

g8 morphological
Y8l reinflection
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Doing stuft with LSTMs

movn> -VerbInf +Noun,Plural > mwn

g8 morphological
L8l reinflection
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 Doing stuff with LSTMs

LSTMs are very capable learners

preposition

sense ? = : T =
disambiguation | ] g Lot oot 1]
+ context representatiod ...... [ = I

semisup on multilingual data \ N
e b Ln

=
&
E
o

a
="
o
ag

=



Doing stuft with LSTMs

| met him for lunch —» Purpose
He paid for me — Beneficiary
We sat there for hours —» Duration

“

anish prepositions supersenses
, vor, zu, ..., gegen sobre, con, para, ..., a Eé (&) 5 ".‘:],I]I'J_(;‘]_‘z| ..., LXplanation
OO EEQ @---D : [T}
: Y =
MLPsp )® * ° MLPsp I LPseNsE
sense ; ‘ : #

disambiguation | I  — PSR |

R T L R T

I ...............
context representati

semisup on multilingual data \ N
D # + L

=
&
=8
o
a
=
o
ag
=
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Doing stuft with LSTMs

LSTMs are very capable learners

Use them to build stuff

Fa syntax based
' machine translation

Uber mehrere Jahre hatte niemand in dem Haus gelebt .

l /////%

over several years , no one had lived in the house .
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Doing stuft with LSTMs

German > English

Use them to build stuff

A syntax based
' machine translation

Uber mehrere Jahre hatte niemand in dem Haus gelebt .

l /////%

over several years , no one had lived in the house .



Doing stuft with LSTMs

German > English

Use them to build stuff

no one livea In tne nouse T1or several years .
syntax based ess

M machine translation )\ \

Uber mehrere Jahre hatte niemand in dem Haus gelebt .

| ST A

over several years , no one had lived in the house .




NP/\VP\
a //\pp
A\ \
/\ /\

no one lived in the house for several years .

uber mehrere Jahre hatte nlemand in dem Haus gelebt .

over several years ; no one had Ilved in the house .
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Doing stuft with LSTMs

LSTMs are very capable learners

Use them to build stuff

, text generation
’ with style
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" Doing stuff with LSTMs

Parameter Value
Theme Plot
Sentiment Positive
Writer Type | Audience
Subjective | False
Length 11-20 words
Descriptive | False

text generation
with style
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Parameter Value
Theme Plot
Sentiment Positive
Writer Type | Audience
Subjective | False
Length 11-20 words

Descriptive | False

text generation
with style

" Doing stuff with LSTMs

“It ’s a touching story that will keep you on
the edge of your seat the whole time ! ! !”

“The story was not quite as good as the first
one but i1t had a pretty good twist ending.”
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" Doing stuff with LSTMs

Parameter | Value e “My biggest problem with the whole movie
Theme Other though 1s that there 1s nothing new or original
Sentiment | Negative or great in this film.”

Writer Type | Audience

Subjective | True e “Ultimately, I can honestly say that this
Length 11-20 words movie is full of stupid stupid and stupid
Descriptive | True stupid stupid stupid stupid.”

text generation
with style
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Doing stuft with LSTMs

LSTMs are very capabple learners

Use them to ild stuff

strong results
make reviewers happy

publish many papers



‘ Vihe ‘ ‘Vbrown‘ Vjumped‘ ‘ ‘ dans, en, sur, ..., par mit, vor, zu, ..., gegen sobre, con, para, ..., a
f% -0 o4 i
e 5 w8 3 vy 3
s T s LA sk [ TSR . se :
+——5——— LSTM® —*—— LSTM® +=* LSTM" «==*—— LSTM" ==—— LSTM" =~—" MLPrg * o o (MLPp
i 5 w5 vh V) -
sf oo st roo e SN s S W st I I I
— " LSTMY = |— " LSTM/ —|—2* LSTM/ = |—*» LSTM/ (= |—*~ LSTM/ —|——*— L >
Ty R Ty R B -.....................................::'.'.'.\.. ............................. asthanan
X ) . et
context representatloli I I

French prepositions German prepositions Spanish prepositions

ol . : le
» Euclidean Distance |«
VP
— T VP = L
R s > R
VB NP ‘ W ! VB NP ‘ vp
| P VP R \ \ \ VP |
cut PRP$ NNS | | NP take NNS NP
\ \ VB A 2 2 4 N A4 2 A é A e A 2 2 4 é \ VB 4 2 é 4 \ % 2 % é 4
their risks [ y s~} NS 2. profits ‘ & NNS
cut E % g ~ PR‘PSB g o ~ g — ris‘ks % z o = g take E_:. w g ~ ‘ﬁt' 8 Z v -
their = A", i @« 2! @ prowe E v
&+ 7]
Compression
Multitask t u t a r a n i
- Gaze L S § ot t ot 0t
Em]l::]:ln(:;ngsz . CCG-tags t u 0 1 2 a i<
eros HO) vin, !
ependency labe i | . . s . » ’
@ direction . average :8 ; b A 3 ‘:
‘ }#‘ M pooling \\~J ! (z,y) <w> t{| ulll OJf| 1 5
Y @ classification
(softmax) t a r ] a €
cceee ccceee (cccee® S ®) L i) 1) 7] i i1
X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/< ‘O
O Cascaded
I e B = B e /
1 a0 o)
D@ Y DG T D@ YY) e L AL %
X/NOUN/dobj/> def ine/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/< === fo S nsemprsirn
Path LSTM Term-pair Classifier L _ Z:::,:;EM
<w> a r j a m a <w

Prepositions supersenses

Temporal, Place, Manner, ..., Explanation

T T ¥ 1

he booked a room for two

nights
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LSTMs are very capabple learners

Use them to ild stuff

strong results
make reviewers happy

publish many papers
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LSTMs are very capable learners

Use them to build stuf

strong results , ,
build tools to build stuft
make reviewers happy

publish many papers a>/ n 6%
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Doing stuft with LSTMs

LSTMs are very capable learners

Use them to build stuf

strong results

build tools to build stuff

make reviewers happy build stuff faster

publish many papers help others build stuff ay n Q‘t

publish more papers
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NLP

Doing stuft with LSTMs

LSTMs are very capable learners

Use them to build stuf Try to understand them

strong results

build tools to build stuff

make reviewers happy build stuff faster

publish many papers help others build stuff ay n Q‘t

publish more papers
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Doing stuft with LSTMs

LSTMs are very capable learners

Use them to ild stuff Try to unerstand them

scratching the surface
reviewers don't care much

| find it really interesting



POng at

~ LSTI\/IS

Yoav Goldberg
Dec 2017

\ Bar-llan University
|7'X-12 NU'DI12IIR
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* |nspecting vector representations of sentences
 LSTMs and hierarchical syntax

* Extracting FSAs from RNNs
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brief Intro to RNNs
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Recurrent Neural Networks

OO0

OO0

OO0

OO0 4

* Very strong models of sequential data.

e Function from n vectors to a single vector.

+ (0000
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Recurrent Neural Networks

OO0

OO0

OO0

OO0

v(what)

* Very strong models of sequential data.

e Function from n vectors to a single vector.

Vv(is)

v(your) v(name)

+ (0000
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Recurrent Neural Networks

OO0

OO0

OO0

OO0

v(what)

* Very strong models of sequential data.

e Function from n vectors to a single vector.

Vv(is)

v(your) v(name)

+ (0000

(e
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Recurrent Neural Networks

OO0

OO0

OO0

OO0

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

e Function from n vectors to a single vector.
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Recurrent Neural Networks

OO0

OO0

OO0

OO0 4

v(what)

* Very strong models of sequential data.

Vv(is)

v(your) v(name)

+ (0000

enc(what is your name)

* Trainable function from n vectors to a single vector.
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Recurrent Neural Networks

b (OOO0O

000

000

000

000 -

N 0000

000

000

000

000 -

e« \We'll focus on the interface level.

b (OOOO

* [here are different variants (Implementations).
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Recurrent Neural Networks

RN N (sg,X1:n) = Sn,¥n

X; - Rdzn7 Vi c Rdout’ S; - Rf(dout)

* Very strong models of sequential data.

* Trainable function from n vectors to a single* vector.



Recurrent Neural Networks
STt So R {
el e | ________ e

e |nput vectors x7.;, output vector yj;

* The output vector Yi depends on all inputs X1



-

Recurrent Neural Networks

_____________________________________________

RNN(Sﬂaxlzn) = Sny¥Yn
si = R(si—1,Xi)
| | yi = O(si)
* Recursively defined.
x; € R4 y; € Riout | g; € RS (dout)

 [here's a vector Yi for every prefix Xi:j
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Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

_____________________________________________

* On their own” nothing.
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Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

_____________________________________________

* On their own” nothing.

~+ But we can train them. |
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Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

_____________________________________________

* On their own” nothing.

S define function form
|

\ ® . n 41" .
_* Butwe can train them. < ;fine loss
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Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

_____________________________________________

T trained parameters.

* On their own” nothing.
define function form

\; ® [ <1i .
* Butwe can train them.{___ 4 fine [oss




SimpleRNN:

RsrnnN(Si—1,Xi) = tanh(W? - s;_1 + W™ . x3)

looks simple.
theoretically powerful.
practically, not so much.

1 1 1 1
Sq | So Sg 1 | Sy

E R,O i—»: R,O i—»i R,O i—»: R,O i—»: R,O i—» S5

_____________________________________________

T trained parameters.

define function form

define loss

r
l




LSTM:

Rrsrm(sj-1,%;) =|cj; hy]
c; =Cj—1 Of+g0oi
h; =tanh(c;) ® 0
i =c(W* . x; + W™ . h;_;)
f =c(W*' . x; + W . h;_)
0 =0(W*° . x; + W' . h;_;) looks complex, and is.
g =tanh(W*€ . x; + WP . h;_;)  very strong in practice.

|
|
1
e
|
|

But we can train7e. <

1 1 1 1
S1 ¢ ' So Sg 1 | Syq

E R,O i—»: R,O i—»i R,O i—»: R,O i—»: R,O i—» S5

_____________________________________________

T trained parameters.

On their own? nothing.
define function form

—

[
|

define loss

1
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Recurrent Neural Networks

* \WWhat are the vectors Yi good for?

Y1 Y2 ys3 Ya Ys

I SN e R T

RO M RO 2 RO P4 RO N RO b ss

_____________________________________________

* On their own” nothing.
define function form

iA” S o - B ‘. I r‘»“
~+ But we can train them ‘

jl
<
| | ‘|:

define loss
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Recurrent Neural Networks

Detining the loss. loss
./

/ predict &
\
' calcloss

R,O R,O R,O R,O R,O
X X X3 X X5

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information
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Recurrent Neural Networks

Detining the loss. loss
/" predict &
\\\\calc loss //
]}%
>0 R,O R,O RO 2. RO RO |
jl XL XL j XL

the final vector is a good
‘'summary’ of the sequence

Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningtul information



Detining the loss. 4

—

/ predict &  predict & . predict & . predict & 7 predict &
| | | | |
‘. calcloss . ' calcloss . calcloss . calcloss .  calcloss

S0 RO ' RO 2. RO 2.0 RO —*. RO
X1 X2 X3 X4 X5

Transducer: predict something from each state.
Backprop the sum of errors all the way back.
Train the network to capture meaningtul information



3 1
So |
> R3703
! 1
L,
2
t}ﬁ
g oo
So

RNN can be stacked
deeper is better!
(better how?)

IR 3 3 3 L o3
ST S5 SE S3 'Sy
— R3,03 ——— R3,05 ——— R5,03 ——— R3,03 ——
! 1 ! 1 ! 1 ! 1
- Lo Lo Lo Lo
2 2 2 2
[Y2 [Y3 [Y4 tY5
1 R 2 [~TTTTT-» 2 [~TTTTT-T» o 2
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seg2seq modaels

loss

- sum
/" predict & 7 predict & 7 predict & . predict & \\\, /" predict &

| | | | |
‘. calcloss . calcloss .  calcloss .  calcloss .  calcloss

yi {}'é ys3 {}M ys
sg ¢ sg 1 sg 1 s§ 1

RD’OD RDvoD RD’OD RDaoD RDaoD
I o e o B

X1 Xo X3 : X4 X5
s o s 1 S s§ 1 S :
Rg,Of RE,Of RE,Of RE,Of Rg,Op —=
X1 Xo X3 X4 X5

Encoder-decoder (seq2seq):
Encoder-RNN encodes the sentence.
Decoder RNN transduces something back.



Auto-Encoder

food any find didn't she . hungry was  Mary
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was hungry . he didn't find food

Encode

A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA
jiweil, Imthang, jurafsky @stanford.edu

Encoder-decoder (seq2seq):
Encoder encodes a sentence.
Decoder tries to reconstruct it.
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food any find didn't she . hungry was  Mary
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was hungry . he didn't find
A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA
jiweil, Imthang, jurafsky @stanford.edu

encoded vector is a "generic sentence representation”
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Mary  was hungry . she didn't find any food
A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA
jiweil, Imthang, jurafsky @stanford.edu

encoded vector is a "generic sentence representation”
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Mary  was hungry . she didn't find any food
A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA
jiweil, Imthang, jurafsky @stanford.edu

encoded vector is a "generic sentence representation”



B I U
=
P

Sentence Renresentation

You can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!
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was hungry . he didn't find food

food

A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jiwei Li, Minh-Thang Luong and Dan Jurafsky
Computer Science Department, Stanford University, Stanford, CA 94305, USA
jiweil, Imthang, jurafsky @stanford.edu

encoded vector is a "generic sentence representation”



You can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!

(" - —

~ what is crammed into the encoded vector?

| i -
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What Is captured by
the encoded vector?



Published as a conference paper at ICLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Yossi Adi' 2, Einat Kermany?, Yonatan Belinkov”, Ofer Lavi’, Yoav Goldberg'

IBM Research
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Published as a conference paper at ICLR 2017

Rejected from pretty much all NLP venues

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.
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Our Goal

Analyze and compare sentence representations in
task and model independent manner
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What information is encoded in the vector?

Let's ask it!
Design tasks to query specific kinds of information.

Train a model to solve them, and see how well it
does.

A mechanism for comparing different sentence
representations.
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The |ldea

What information is encoded in the vector?

Let's ask it!
Design tasks to query specific kinds of information.

Train a model to solve them, and see how well it
does.

\ If we can't train a classifier j
A mechanism f¢ to act on information from a vector
representations  is the information really there? |
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What's in a sentence”

To tully reconstruct a sentence, we need to know:
* How many words?
 Which words?

e \What order?

Compare different sentence representations based
on their preservation of these properties.
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Formulate as
Prediction Tasks

Sentence Length Word order

Which words?
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Sentence Length

Input:

Sentence encoding.
Task:

Predict length (8 bins)

Which words?

L Formulate as
Prediction Tasks

Word order
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Sentence Length

Input:

Sentence encoding.
Task:

Predict length (8 bins)

Which words?

Input:

Sentence encoding s.
Word encoding a.
Task:

Does s contain a?

Formulate as
Prediction Tasks

Word order
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Formulate as

Prediction lasks

Sentence Length

Word order

Input:

Sentence encoding.
Task:

Predict length (8 bins)

Which words?

Input:

Sentence encoding s.
Word encoding a.
Task:

Does s contain a?

Input:

Sentence encoding s.
Word encoding a.
Word encoding b.
Task:

Does a appearins
before b?
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Some Results

Sentence Length Encoder (LSTM)
Input. . dim acc
Sentence encoding.

Task 100
Predict length (binned) 300
500
750

Baseline 22% 1000
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Sentence Length Encoder (LSTM)
Input. . dim acc
Sentence encoding. ]
Task 100 950%
Predict length (binned) 300 80%
500 82%
750 79%

Baseline 22% 1000 83%
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Sentence Length Encoder (LSTM) CBOW
Input | dm  acc
Sentence encoding. ] 5
Task: 100 950% a
Predict length (binned) 300 80%
500 82%
750 79%

Baseline 22% 1000  83%
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CBOW (Continuous-Bag-of-Words)

* Represent each word in the sentence as a vector (word2vec)

* The average of these vectors is the sentence vector

5
(O+Q+Q+Q+ )/6

O

O

OOO0O0O
O

OOO0O0O

>

The fox jumped over the fence sentence vector
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Sentence Length Encoder (LSTM) CBOW
Input | dm  acc
Sentence encoding. ] 5
Task: 100 950% a
Predict length (binned) 300 80%
500 82%
750 79%

Baseline 22% 1000  83%
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Sentence encoding. ] ]
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Predict length (binned) 300 80% 49%
500 82% 57 %
750  79% 60%

Baseline 22% 1000 83% 60%
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Input . dim acc
Sentence encoding. ] ]
Task: 100 500/0 450/0
Predict length (binned) 300 80% 49%
500 82% 57%
. . 750  79% 60%
Baseline 22% 1000 83% 60%

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation
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"~ Some Result
Sentence Length Encoder (LSTM) CBOW
Input . dim acc
Sentence encoding. ] ]
Task: 100 500/0 450/0
Predict length (binned) 300 80% 49%
500 82% 57 %
79% 60%
83% 60%

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation



hAIAAA hAAI II*A
reviewer 2:

The paper reads very well, but

a) I do not understand the motivation, and
b) the experiments seem flawed.

The average over CBOW word embeddings should
never encode for sentence length. The fact
that you learn reasonably well with

these representations, suggest overfitting.
This may well be, since Wikipedia

contains tons of duplicate or near-duplicate
sentences.

considering that CBOW Is an averaged representation
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How does CBOW
encode length?

* Maybe some words are predictive of longer

sentences?
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encode length?

* Maybe some words are predictive of longer
sentences?
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English sentences
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TSynthetic sentences
with random words

Ul
o
T

Length prediction gccuracy
D
(0]

TN
o

100 300 500 750 1000
Representation dimensions
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encode length?

* Maybe some words are predictive of longer
sentences?

(@)
U
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T

English sentences

9]
Ul
T

TSynthetic sentences
with random words
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o
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Length prediction gccuracy
D
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100 300 500 750 1000
Representation dimensions
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How does CBOW
encode length?
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Norm

How does CBOW
encode length?

0.55f ¢

0.50}

0.40}

...
..... ®
0.35_ .......... ]
[ ]

5 10 15 20 25 30 35
Sentence length

(Why?)
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Some Results

Which words?

Input:

Sentence encoding s.
Word encoding a.
Task:

Does s contain w?

Encoder (LSTM)

dim
100
300
500

790
1000

dCC

CBOW
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Which words? Encoder (LSTM) CBOW
Input: | dim oo
Sentence encoding s. i
Word encoding a. 100 70%
Task: 300 75%
Does s contain w? 500  76%
750 80%

1000  75%
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"~ Some Result
Which words? Encoder (LSTM) CBOW
Input: . dim acc
Sentence encoding s. ]
Word encoding a. 100 /0%
Does s contain w? 500 76%
750 80%
1000  75%

higher dim not necessarily better!
(reconstruction BLEU does improve in higher dims)
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Which words? Encoder (LSTM) CBOW
Input: 5

. im acc
Sentence encoding s. ] .
Word encoding a. 100 70% 84%
Task: 300 75% 88%
Does s contain w? 500  76% 60%
750 80% 60%

1000  75% 60%
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"~ Some Result
Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ] .
Word encoding a. 100 /0% 84%
Does s contain w? 500 76% 60%
750 80% 60%
1000  75% 60%

cbow better at preserving sentence words
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Some Results
Word order Encoder (LSTM) CBOW
Input: 4im
Sentence encoding s. ' ace
Word encoding a. 100 79%
Word encoding b. 300  83%
Task: 500 85%
Does a appear in s 750 86%

before b? 1000  90%
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Word order Encoder (LSTM) CBOW
nput: dim acc
Sentence encoding s.
Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%

before b? 1000  90% 06%
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Word order Encoder (LSTM) CBOW
Input: 4 |
Sentence encoding s. moact wait what"
Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%

before b? 1000  90% 06%
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NLP S R ‘t

Word order Encoder (LSTM) CBOW
nput: dim acc -
Sentence encoding s. wait what"
Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%
before b? 1000 90% 66%

what if we trained on words alone,
without sentence representation?



A

Some Results

Word order

Input:

Sentence encoding s.
Word encoding a.
Word encoding b.
Task:

Does a appearins
before b*?

Encoder (LSTM)

dim
100
300
500

790
1000

dCC

79%
83%
89%
806%
90%

67 %
67 %
67 %
67 %
095%

CBOW

wait what?
/0% 67%
/0% 68%
66% 65%
66% 64%
66% 64%

what it we trained on words alone,
without sentence representation?
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Some Results

Word order

Input:

Sentence encoding s.
Word encoding a.
Word encoding b.
Task:

Does a appearins
before b*?

Encoder (LSTM)

dim
100
300
500

790
1000

dCC

79%
83%
89%
806%
90%

6/ %
6/ %
6/ %
67 %
0695%

CBOW

wait what?
/0% 6/7%
/0% 68%
66% 65%
66% 64%
66% 64%
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or Just Sequences?

e \We use the trained encoders

* But evaluate them on permuted sentences

encode(“fence over jumped the fox The”)

Does fence appear betfore fox”
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or Just Sequences?

-4 LSTM

cbow

4 | | | | |
100 300 500 750 1000
Represen tation dimensions

Length Prediction
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"=" Does It Learn to Represent English

or Just Sequences?

—

LSTM

Content prediction accur

cbow

Content Prediction
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""" Does it Learn to Represent English

or Just Sequences?

. —4 LSTM

70 |
.\- o o CbOW

Order prediction accurac
(e)}
o

) 1« Cbow permuted

Order Prediction



""" Does it Learn to Represent English

or Just Sequences?

-~

| auto-encoder LSTM ;
' does not really care what it encodes. |
| ageneric sequence encoder. |
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""" Does it Learn to Represent English

or Just Sequences?

-~

Content prediction accura
)] [e)] ~ ~
Length prediction accura

Order prediction accura
[e2] ~ [e2]

f auto-encoder LoTM »,
| does not really care what it encodes. |
| ageneric sequence encoder. |

nat-lang information is in the decoder.
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Skip-Thought Vectors

<<<<<

<eos> This



Content prediction accuracy
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""" Does it Learn to Represent English

or Just Sequences?
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Does it Learn to Represent English

or Just Sequences?

Content prediction accura
~ (o]

Length prediction accura
Order prediction accura
[e)] ~ o

Represen tation dimensions

Content

Siip thought encoders do care |
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"What did we learn?

e |STM-encoder vectors encode length.

e |f you care about word identity, preter CBOW.

e |f you care about word order, use LSTM.

e (Can recover guite a bit of order also from CBOW.

« LSTM Encoder doesn't rely on language-naturalness

o Skip-thoughts encoder does rely on it.
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Hierarchical Structures



Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'? Emmanuel Dupoux! Yoav Goldberg
LSCP! & IJN?, CNRS, Computer Science Department
EHESS and ENS, PSL Research University Bar Ilan University
{tal.linzen, yoav.goldberglgmail.com

emmanuel .dupoux}@ens. fr
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy kicks the ba
the boys kick the ba
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy wit
the boys wit

Nt

N 1

ne w

ne w

Nite s

Nite s

Nirt with the bl

Nirts with the b

e collar kicks the ball
ue collars kick the ball
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy (wit
e boys (wit

Nt

Nt

ne w

ne w

Nite s

Nite s

nirt (with the blue collar)) kicks the ball

nirts (with the blue collars)) kick the ball
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“ir - Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral rationalism are plato and immanuel kant .
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“ir - Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

replace rare words with their POS
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“ir - Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject
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“ir - Can a sequence LSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN

cut the sentence at the verb
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Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN

A

plural or singular?

binary prediction task
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“ir - Can a sequence LSTM
learn agreement??

some prominent figures in the history of philosophy who have
defended moral NN

or singular?
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“ir - Can a sequence LSTM
learn agreement??

some prominent in the history of philosophy who have
defended moral NN

or singular?
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i*  Can a sequence LSTM
learn agreement??

some prominent in the history of philosophy who have

defended moral NN

A

or singular?

in order to answer:
Need to learn the concept of number.

Need to identity the subject (ignoring irrelevant words)
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Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject
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Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

choose a verb with a subject
and flip its number.
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Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant . V

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant . X

can the LSTM learn to
distinguish good from bad sentences?
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Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).
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“ir - Can a sequence LSTM

learn agreement?

predicts number with 99% accuracy.

Error rate

...but most examples are very easy

50% -

N W b
S 2 2
> > o
1 1

(look at last noun).

0-0-0-0-0-0-0-0-0-0-0-0-0-9

| | | | | | |
2 4 o6 8 10 12 14

Distance (no intervening nouns)
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Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

97% accuracy



“ir - Can a sequence LSTM

learn agreement??

PC2

0.8 -

0.6 -

0.4-

0.2-

0.0 -

-0.2 -

—0.4-

-0.6-

-0.8-

-1.0

tickstrsonality

styles C\Jerg'ﬁglrgmp order

survivalclosure

Be .. commidiitealth
e WdkEaEs ians estate

oo sepglResn wire o, duantity
et > vista “revélsiattemcdation
Qi BaiRlenocrators 0B WiBsH

LT, < MY RHE gy

word

pottery .. . leaf  patch classification
unepapke es\(:opeDrOJeCt
inE& gt

filegccusations
books

marriages

relationship

220 -15 -10 -05 00 05 1.0 15 20 25

PC1



Can a sequence LSTM
learn agreement??

more errors as the number of intervening nouns
Of opposite number iINncreases



ve)

c

A\

-

Can a sequence LSTM
learn agreement??

Error rate

100%

80%

60%

40%
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Baseline
(common
nouns)
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Number
prediction

0
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Error rate

“ir - Can a sequence LSTM

learn agreement?

100%

80%

60%

40%

20%

0%

Baseline
(common
nouns)

Majority class

Number
prediction

b b but < 16% err

0 1 2 3 4 . .
Count of attractors for 4 mlsleadlng
NOouns...
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learn agreement??

but we trained it on the agreement task.

does a language model learn agreement?
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Can a sequence LSTM
learn agreement??

does a language model learn agreement?

100% —

80% —

Language modeling
60% -

Error rate

40% - .
’ Majority class

Grammaticality
Number prediction
Verb inflection

20% -

0% -

| | | |
0 1 2 3 4

Count of attractors
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learn agreement??

does a language model learn agreement?

what if we used the best LM in the world?
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Error rate

Can a sequence LSTM

learn agreement??

does a language model learn agreement?

100%

80%

60%

40%

20%

0%

Majority

Google LM

| | | | |
0 1 2 3 4

Count of attractors

Verb inflecti

Google's beast LM
does better than ours
but still struggles
considerably.
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Can a sequence LSTM
learn agreement??

does a language model learn agreement?

LSTMs can learn agreement very well.
But LSTM-LM does not learn agreement.

Explicit error signal is required.
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learn agreement??

Where do LSTMs fail?

IN many and diverse cases.

but we did manage to find some common trends.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

noun compounds can be tricky

Conservation refugees live in a world col-
ored 1n shades of gray; limbo.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Relative clauses are hard.

The landmarks rhar this article lists here
are also run-of-the-mill and not notable.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Reduced relative clauses are harder.

The landmarks this article lists here are
also run-of-the-mill and not notable.
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Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%

Reduced Relative clause 25%
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%
Reduced Relative clause 25%

humans also fail much more on reduced relatives.
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recap

* WWe wanted to show LSTMs can't learn hierarchy.
- ==> We sort-of failed.
 LSTMs learn to cope with natural-language
patterns that exhibit hierarchy, based on

minimal and indirect supervision.

 But some sort of relevant supervision is required.
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“tr - Agreement Prediction --
What's next

* Many ways to extend this:
* More languages
* More phenomena

e Make it fail

* and then improve it.
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what do trained LSTM acceptors encode?

Extracting FSAs from RNNs
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Extracting Automata from Recurrent Neural Networks
Using Queries and Counterexamples

Gail Weiss!, Yoav Goldberg?, and Eran Yahav!
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~ RNN acceptors as
State Machines
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RNN acceptors as
State Machines

accept/reject /
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® 4 RO "+ RO 2 RO i—- RO i— RO
X1 X2 X3 X4 X5

staté  input new

symbpol state
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tr— RNN acceptors as
State Machines

accept/reject

| very S|m|lar to FSA ’
unfortunately the states are contlnuous vectors '

staté  input new
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INFORMATION AND COMPUTATION 75, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples™®

DANA ANGLUIN

Department of Computer Science, Yale University,
P.O. Box 2158, Yale Station, New Haven, Connecticut 06520
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- L* algorithm
 FSAs are learnable from "minimally adequate teacher’

* Membership queries

"does this word belong in the language™”"

* Equivalence queries

"does this automaton represent the language™”
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Game Plan

* Jrain an RNN
* Use it as a Teacher in the L™ algorithm

 |L*learns the FSA represented by the RNN
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LI RNN as
Minimally Adequate leacher

Membership Queries

Easy. Just run the word through the RNN.

Equivalence Queries

Hard. Requires some trickery.
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Answering
Equivalence Queries

 Map RNN states to discrete states, forming an FSA
abstraction of the RNN.
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i Answering
Equivalence Queries

 Compare L* Query FSA to RNN-Abstract-FSA.
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Answering
Equivalence Queries

a b
b
a,b
b a

e Conflict”

 Maybe state-mapping is wrong.
It so: refine the mapping.

 Maybe L* FSA is wrong.
If so: return a counter example.
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Some Results

- Many random FSAs:

* 5 or 10 states, alphabet sizesof 3 or 5
* LSTM/GRU with 50, 100, 500 dimensions.
 The FSAs were learned well by LSTM / GRU

* And recovered well by L*.
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'lIsts or dicts’

« I

* S

* [FISIOIFINIT]

- {S:}F,S:}¥,S:0,S:T,S:S,S:N}

alphabet: ¥ s 0O N T ,

{

J



—{_ Sstart

{
(75 perfect!
S
.S
W02 NTL}
0:FENTL) 0FNST

LG

7—'_

0:ENSTLIL (4 ) JO:ENSTLL}

O ENSTLLLLS




l
B | U \"F TECHNION

% u Israel Institute

Balanced Parenthesis

(a((ejka((acs)) (asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ( )
nesting level up to 8.
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Balanced Parenthesis

\
~N
N

p
Y

(.«

kjk; /2
= \(\">‘—+\’('/

o
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Balanced Parenthesis

final automaton:
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Balanced Parenthesis

wr Pk
‘
'. h !
‘ -~ -
1
3
o
.
.
'-A
.»‘
.
| j
final automaton: W
[ | \
. '..
.
»
1
2
'.
=
‘ -
l: <
ad L u
'..
“
L ‘.
' ) ™
.
|
‘ v
v
"
A
"\
-
—
-
s Lw
1}
1
L)
' Lo
"
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Balanced Parenthesis

final automaton:

o S

; . 2l \
e 0’ 1-d,i,1,0,9.8 X-Z

1"

' v

0=

b.d.u \e-hj-mp.rt-w
o 15 ) Dac.e-tv-z
o v,z 4 ' / \ 4 7
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])


mailto:bla12@abc.com
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net
[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])
20,000 positive examples

20,000 negative examples
2,000 examples dev set
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])

20,000 positive examples
20,000 negative examples
2,000 examples dev set

LSTM has 100% accuracy on both train and dev (and test)
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‘Emails’

the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some examples it found:

25 . net

5x.nem
2hs.net

LSTM has 100% accuracy on both train and dev (and test)



F
B | U \F TECHNION
Israel Institute
% u of Technology
NLP

- We can extract FSAs from RNNs
* ... If the RNN indeed captured a regular structure
* ... and in many cases the representation

captured by the RNN is much more complex
(and wrong!) than the actual concept class.
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Much more to do:
* scale to larger FSAs and alphabets
* scale to non-regular languages

* apply to 'real’ language data
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To summarize (the talk)

e LSTM are very powerful
* We know how to use them.

* We don't know enough about their power and
[imitations.

* We should try to understand them better.
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Understanding LSTMs

- Our humble start

* Experiments for understanding sentence
representations.

| STMs and English subject-verb agreement.
* Extracting FSAs from trained LSTMSs.

- Still much to do. Help us do it.



-

thanks for listening



