

Overview of the EVALITA 2018 Aspect-based Sentiment Analysis task (ABSITA)

Pierpaolo Basile, Valerio Basile, Danilo Croce, Marco Polignano

EVALITA Evaluation of NLP and Speech Tools for Italian

User's opinion

7,0

Booking.com

«Posizione e comodità ai mezzi.Personale cortesissimo.»

Rita

Italia

R

Arredo camere, un po' vetusto. Assenza di mini-bar interno o anche semplice macchinetta caffè/bevande calde, abbastanza anomalo in una struttura simile!

Luca

I croissant erano buoni tipici di Roma! Grande varietà di cibo, cappuccino ottimo! Grande varietà di cioccolata Perugina, marmellate, succhi di frutta.

7,6

Location and Staff Positive

Comfort Negative

4,3

Service Positive

Motivation

Users no more passive Amazon, TripAdvisor or Booking.com allow people to express their opinions on items and services, such as hotels and restaurants.

Sentiment Analysis Aspect-based Sentiment Analysis (ABSA) is an evolution of Sentiment Analysis that aims at capturing the aspect-level opinions expressed in natural language texts

Application in real domains

Cleanliness	8.7	Value for money	8.5
Comfort	8.4	Free WiFi	8.0
Facilities		Location	
Staff	8.3		8.1
Stan	8.6		

Relevant Research Topic

The task was repeated in SemEval 2015 and 2016, aiming to facilitate more in-depth research

Task Description

At a glance

Participants are asked to **detect** within sentences (expressing opinions about accommodation services) some of the **aspects considered by the writer**.

For each detected aspect, participants are asked to detect a specific **polarity class**

The set of considered aspects is: PULIZIA (cleanliness), COMFORT, SERVIZI (amenties), STAFF, QUALITA-PREZZO (value), WIFI and POSIZIONE (location).

Aspect Category Detection (ACD)

In the ACD task, one or more "aspect categories" evoked in a sentence have to be identified, e.g. the posizione (location).

COMFORT STAFF LOCATION VALUE ...

Aspect Polarity Detection (ACP)

Each **category aspect** detected in the ACD task have to be annotated with **polarity label**: **POS** (positive) , **NEG** (negative), also in a not exclusive way (**Mixed**)

LOCATION POS

LOCATION NEG

X

DATASET

Booking.com

The data source chosen for creating the ABSITA datasets is the popular website booking.com

We extracted the **textual reviews** in the Italian language, labeled on the website with one of the 8 considered aspects. We collect in total **4,121** distinct reviews.

Annotation Strategy

The reviews have been manually checked to verify the annotation and to add missing links between sentences and aspects

- We started by annotating 250 randomly chosen sentences observing an interannotators agreement rating of 94.4% average
- In order to complete the annotation, we assigned different 1,000 reviews to each annotator that correspond to 2,500 sentences on average

Each annotator received a **uniformly balanced distribution** of positive and negative aspects. We annotated in total more than 10,000 sentences.

DATASET: Statistics

Released datasets:

Splitting percentage:

Trial set:	30 sentences	0.34%
Training set:	6,337 sentences	69.75%
Test set:	2,718 sentences	29.91%

Dataset	clean_pos	comf_pos	amen_pos	staff_pos	value_pos	wifi_pos	loca_pos
Trial set	2	8	6	3	1	_1	5
Training set	504	(978)	948	(937)	169	(43)	1,184
Test set	193	474	388	411	94	18	526
Dataset	clean_neg	comf_neg	amen_neg	staff_neg	value_neg	wifi₋neg	loca_neg
Trial set	1	2	3	_1	1	0	1
Training set	383	(1,433)	920	(283)	251	(86)	163

Evaluation and baselines

Evaluation protocol:

We evaluate the ACD and ACP subtasks separately. The baseline is computed by considering a system which assigns the most frequent (aspect, polarity) pair estimated over the training set to each sentence. This pair is equal to "comfort : negative"

ACD TASK

We calculate the micro Precision (P_a) , Recall (R_a) and F1-score $(F1_a)$:

$$P_a = \frac{|S_a \cap G_a|}{|S_a|} \quad R_a = \frac{|S_a \cap G_a|}{|G_a|} \quad F1_a = \frac{2P_a R_a}{P_a + R_a}$$

Where S_a is the set of labels returned for each sentence and G_a the set of the gold (correct) aspect category annotations.

As an example:

 $S_a = \{\text{CLEANLINESS}, \text{COMFORT}\}$ $G_a = \{\text{CLEANLINESS}, \text{STAFF}\}$ $P_a = \frac{1}{2}$ $R_a = \frac{1}{2}$ $F1_a = \frac{1}{2}$

ACP TASK

We calculate the micro Precision (P_b) , Recall (R_b) and F1-score $(F1_b)$ considering both the **aspect** categories detected in the sentences together with their corresponding **polarity**.

Where S_a is the set of labels returned for each sentence and G_p the set of the gold (correct) aspect category annotations.

As an example: $G_p = \{(\text{CLEANLINESS}, POS), (\text{STAFF}, POS)\}$ $S_a = \{(\text{CLEANLINESS}, POS), (\text{CLEANLINESS}, NEG), (\text{COMFORT}, POS)\}$

$$P_a = \frac{1}{3}$$
 $R_a = \frac{1}{2}$ $F1_a = 0.28$

7

Results

Partecipants

- 7 teams
- 11 partecipants
- 20 total runs
- 12 runs for ACD
- 8 runs for ACP
- Of the 7 teams who participated to the ACD task, 5 teams also participated to the ACP task.

ACD Partecipants				
Systems	Micro-P	Micro-R	Micro-F1	
italiaNLP_1	0.8397	0.7837	0.8108	
gw2017_1	0.8713	0.7504	0.8063	
gw2017_2	0.8697	0.7481	0.8043	
X2Check_gs	0.8626	0.7519	0.8035	
UNIPV	0.8819	0.7378	0.8035	
X2Check_w	0.8980	0.6937	0.7827	
italiaNLP_2	0.8658	0.697	0.7723	
SeleneBianco	0.7902	0.7181	0.7524	
VENSES_1	0.6232	0.6093	0.6162	
VENSES_2	0.6164	0.6134	0.6149	
ilc_2	0.5443	0.5418	0.5431	
ilc_1	0.6213	0.433	0.5104	
mfc	0.4111	0.2866	0.3377	

ACP Partecipants

rier raiteeipe			
Systems	Micro-P	Micro-R	Micro-F1
italiaNLP_1	0.8264	0.7161	0.7673
UNIPV	0.8612	0.6562	0.7449
gw2017_2	0.7472	0.7186	0.7326
gw2017_1	0.7387	0.7206	0.7295
italiaNLP_2	0.8735	0.5649	0.6861
SeleneBianco	0.6869	0.5409	0.6052
ilc_2	0.4123	0.3125	0.3555
ilc_1	0.5452	0.2511	0.3439
mfc baseline	0.2451	0.1681	0.1994

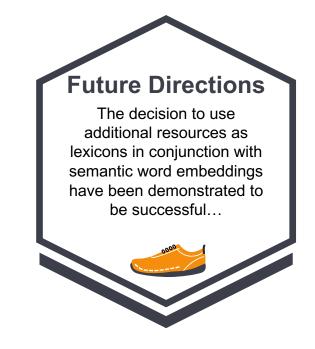
Submitted systems

- **5** systems (*ItaliaNLP*, *gw2017*, *X2Check*, *UNIPV*, *SeleneBianco*) are based **on supervised machine learning** and **3** systems (*ItaliaNLP*, *gw2017*, *UNIPV*) employ **deep learning** (in particular LTSM networks, often in their bi-directional variant).
- Pre-trained word embeddings are used as word representations by UNIPV and gw2017. ItaliaNLP employs word embedding created from the ItWaC corpus (Baroni et al., 2009) and corpus extracted from Booking.com.
- ItaliaNLP, VENSES and X2Check used pre-existing NLP pipelines. Other systems make use of off-the-shelf NLP tools such as SpaCy (gw2017, UNIPV) and Freeling (SeleneBianco).
- Additional resources used by the systems often include domain-specific or affective lexicons. ItaliaNLP employed the MPQA affective lexicon. UNIPV system makes use of the affective lexicon for Italian developed in the framework of the OpeNER project
- All runs submitted can be considered "constrained runs", the systems were trained on the provided data set only

Consideration

- The results obtained by the teams **largely outperform the baseline** demonstrating the efficacy of the solutions proposed and the **affordability** of all the two tasks
- The results obtained for the ACD task show a small range of variability: top results are concentrated around a F1 score value of 0.80
- The values of precision and recall show higher variability, indicating significant difference among the proposed approaches
- Good results have also been obtained using rule-based systems, even though they suffer from generalization issues and need to be tailored on the set of sentences to classify

Conclusion



Italia_NLP The system is first classified in both the two subtask: ACD and ACP

Systems Details Available

More details about the implementation of the systems that participated in the task can be found in their specific reports

Extra resources

The definition of new lexicons and resources for supporting the task in the Italian language is an exciting future research direction

http://sag.art.uniroma2.it/absita/

Pierpaolo Basile

University of Bari pierpaolo.basile@uniba.it

Valerio Basile

University of Turin basile@di.unito.it

Danilo Croce

University of Rome "Tor Vergata" danilo.croce@uniroma2.it

Marco Polignano

University of Bari marco.polignano@uniba.it