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Abstract
Although the Transformer is currently the best-performing architecture in the homogeneous config-
uration (self-attention only) in Neural Machine Translation, many State-of-the-Art models in Natural
Language Processing are made of a combination of different Deep Learning approaches. However, these
models often focus on combining a couple of techniques only and it is unclear why some methods are
chosen over others. In this work, we investigate the effectiveness of integrating an increasing number
of heterogeneous methods. Based on a simple combination strategy and performance-driven synergy
criteria, we designed the Multi-Encoder Transformer, which consists of up to five diverse encoders.
Results showcased that our approach can improve the quality of the translation across a variety of
languages and dataset sizes and it is particularly effective in low-resource languages where we observed
a maximum increase of 7.16 BLEU compared to the single-encoder model.
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1. Introduction

Neural Machine Translation (NMT), in Natural Language Processing (NLP), describes the
problem of automatically translating a text sentence from one language into another using
Neural Networks. Over the past years, translation systems performed increasingly better thanks
to the design of more sophisticated and effective models. Models consist of an encoder that
extracts a representation from the input sequence in the source language and a decoder that
generates the same sentence in the target language.

There are currently several types of neural processing methods. The most popular ones
consist of self-attentive networks (SANs or ANNs) [2], recurrent neural networks [3] (RNNs)
and convolutional (CNN) ones [4, 5, 6]. More recently, the works of [7] and [8, 9] proposed
two additional variants. These methods differ in the way they process a sequence: for instance,
recurrent neural networks [3] apply the same operation over the sequence in a sequential
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manner and each element is given access to the previous ones thanks to one or two hidden
states. Self-attentive neural networks [2] instead, make use of the Attention mechanism [10, 11],
a method that constructs representations made of the Softmax-weighted sum of all the elements
in the sequence. Each of these approaches presents advantages and drawbacks on its own. For
instance, RNNs better capture the sequentiality in the data compared to stateless methods [12],
such as CNNs and SANs, that rely on simple numeric encodings. However, as a drawback, the
first suffers from computational limitations and a limited receptive field.

In the presence of a variety of possible processing strategies, State-of-the-Art models often
leverage the strength of a combination of multiple approaches in both NLP [13, 14, 15, 16, 17]
and Vision [9, 12]. The effectiveness of hybrid models outlines the benefits of introducing
heterogeneous ways of processing inside the same architecture. However, often in these
architectures, only two methods are considered and to the best of our knowledge, little has been
done on the combination of a larger number of heterogeneous encoding methods. Additionally,
different techniques in State-of-the-Art models are often closely intertwined in one single
processing block. As a matter of fact, there is a lack of consensus on how to combine effectively
each technique. This type of integration approach is limiting in terms of applicability since not
all encoding strategies can be easily combined. For instance, in a single encoder architecture,
combining either the convolution or the self-attention with recurrent methods ultimately results
in a recurrent encoder.

In this work, we propose an investigation into the effectiveness of combining an increasing
number of diverse neural network processing methods. In particular, we adopt the Transformer
decoder [2] and an encoder that is made of an increasing number of heterogeneous methods.
Moreover, we propose a very simple encoder combination strategy such as the simple sum.
On one hand, it is bound to be less performing than ad-hoc hybrid designs. On the other, its
simplicity enables the addition of an arbitrary number of independent and diverse encoders.

The paper is organized as follows. Section 2 presents related works and several encoding
techniques. Then, in Section 3, we introduce the Multi-Encoder Transformer, which encoder
combines up to five processing methods: Self-Attention, Convolutional, LSTM, Fourier Trans-
form (FNet), and Static Expansion. In Section 4, we present five translation datasets on which
our models are trained and tested. Finally, in Section 5, we present the results and discuss the
advantages and limitations of our multi-encoder transformer. In particular, we discover that
different methods synergize differently when combined with each other and that low-resource
languages benefit the most from the increase in the number of heterogeneous encoders.

In summary, our contributions are as follows: (i) we analyze the effectiveness of simply
summing multiple encoding strategies in the Transformer, in particular adopting the RNN, CNN,
SAN, Static Expansion and Fourier Transform (FNet) across a variety of Language translation
tasks; (ii) we analyze the synergies of the five processing methods and design a dual-encoder,
triple encoder, quadruple and quintuple encoder based upon the results; (iii) we show that
the multi-encoding achieves better performances with respect to the baseline Transformer,
despite each encoder presenting a poorer performance in the single instance; (iv) we show
that low-resource languages are those that benefit the most from combining heterogeneous
encoders.



2. Related Works

Many works in several research fields explored the benefits of combining multiple, sometimes
complementary, encoding strategies. QRNNs [5] tackled the computational burden of RNNs
and proposed to exploit the efficiency of the convolution operation while preserving the strong
sequential awareness using recurrent pooling layers in various NLP tasks. In Neural Machine
Translation [13] integrated the self-attention layer in the GNMT [18], a full RNN network based
on stacks of LSTM networks [19]. Conversely, [14] explored the opposite solution and integrated
the LSTM inside the Transformer. The works of [20] and [15] merged the self-attention method
and convolution on a deep level, forming a moving window in which relationship among
sequence tokens are extracted on a local level instead of a global one. On a similar level, in
Audio Speech Recognition, best-performing architectures such as the Conformer [17] and
SqueezeFormer [16] rely on a combination of convolution layers and self-attentive blocks to
capture both local and global correlations respectively in the spectrum representation. Similar
ideas were applied in other tasks such as Reading Comprehension [21] and Image Classification
[22]. The adoption of multiple encoders is natural for some problems, such as those involving
multiple input sequences [23, 24] which also led to the investigation of optimal interconnection
between the encoders and the decoder [25, 14, 13]. Also, the scalability of Transformers has
been deeply investigated in a variety of contexts [26, 27, 28, 29, 30] which mostly focus on
increasing the number of layers or sequence length.

In contrast to these works, our work is the only one that investigates the effectiveness of
increasing the number of heterogeneous encoding methods in the Transformer and present
hybrid architectures made of an unprecedented number of strategies.

3. Heterogeneous Multi-Encoder

3.1. Encoding Strategies

Given the input sequence 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁}, 𝑥𝑖 ∈ R𝑑 and 𝑑 the hidden dimension, we
describe five encoding strategies based on recurrency, convolution, self-attention, Fourier
transform and static expansion.
LSTM. Recurrent Neural Networks are sequence modelling methods inspired by recurrent

functions, which output at time step 𝑡 ∈ {1, 2, . . . , 𝑁} are affected by all the input of the
previous steps by means of the hidden states. The hidden state consists of one or multiple
vectors depending on the architecture. In this work, we consider the LSTM [19] encoder whose
formula is showcased below:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑡−1 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 )
𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑡−1 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)
𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑡−1 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡−1 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑧𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)

where 𝑊,𝑈 ∈ R4·𝑑×𝑑, 𝑏 ∈ R4·𝑑 and 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 are the forget, input, output gates, whereas



ℎ𝑡, 𝑐𝑡 represent the hidden states. We restrict to the uni-directional formulation because the
bidirectional processing of the input is already provided by the bidirectional nature of self-
attention, which supports the goal of experimenting with diverse encoding strategies.

ConvS2S. Convolution networks were partially introduced in Natural Language Processing
to overcome the computational inefficiency of recurrent models [5] but later proved to be an
effective alternative to other sequence modelling architectures and are even able to achieve
State-of-the-Art performances [6, 15, 31, 20]. In this work, we will focus on the ConvS2S encoder
[6]. Similar to the Vision case, its working principle lies in the filter banks learning the local and
most simple semantics among elements in the sequence during earlier stages and extracting
longer and more complex relationships in the higher-order layers. Given an input sequence
𝑋 and an odd kernel size 𝑘, the encoder is made of a set of filters 𝑊 ∈ R2·𝑘×2·𝑑 that perform
the convolution operation for each time step 𝑡 = {1, 2, . . . , 𝑁} in the input sequence. The
output dimension is twice the model dimension in order to be fed into the GLU function, which
represents the non-linear component of the layer:

𝐺𝐿𝑈(𝑎, 𝑏) = 𝑎⊗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑏)

where 𝑎, 𝑏 ∈ R𝑑 are the two halves of the output vector.
Self-Attention. The attention mechanism was first introduced in NLP in [10], and it was

applied to recurrent models drastically improving the performances by allowing the encoder
information to be distributed on each encoder input rather than one single state vector. The
method was later refined in [11] and the two works provided the foundation of the Transformer
[2]. Its main component, the self-attentive layer, consists of the following operations (considering
the single-head case):

𝑆𝑒𝑙𝑓 -𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾⊺

√
𝑑

)𝑉

where 𝑄,𝐾, 𝑉 ∈ R𝑁×𝑑 are linear projections of the same input. The method has been proven
to be able to extract the syntax and semantics as well as capture long-range relationships of the
sequence thanks to the global and bidirectional access to the whole input right at the first stage
of the network compared to the previous method.
Static Expansion. The Static Expansion [9] proposes to distribute the sequence into an

arbitrary number of elements. In its essence, the idea consists of a Forward phase where the
input of length is transformed into a new sequence one featuring a new target length, and a
Backward where it’s transformed back to the original one. In practice, the input is linearly
projected four times, producing 𝐾,𝑉𝐴, 𝑉𝐵, 𝑆 ∈ R𝑁×𝑑. Given the desired length 𝑁𝐸 , 2 ·𝑁𝐸

expansion vectors are considered, denoted as 𝐸𝑄, 𝐸𝐵 ∈ R𝑁𝐸×𝑑. The static expansion layer
performs three operations.

(i). First, the dot product similarity is computed between the expanded queries and the keys
obtaining the length transformation matrix L:

𝐿 =
𝐸𝑄𝐾

⊺

√
𝑑

(1)



The result is fed into a ReLU function and normalized. The sequences featuring new lengths are
computed in the following way:

𝑃 𝑓𝑤
𝑖 = Ψ(𝑅𝑒𝐿𝑈((−1)𝑖+1𝐿), 𝜖) 𝑖 ∈ 1, 2

𝐹 𝑓𝑤
𝑖 = 𝑃 𝑓𝑤

𝑖 (𝑉𝑖 + 𝐸𝑖) 𝑖 ∈ 1, 2
(2)

Ψ : (𝑋, 𝜖) → 𝑌 , 𝑋,𝑌 ∈ R𝑁1×𝑁2 is the normalization function and 𝜖 ∈ R>0 the coefficient
ensuring numeric stability.

(ii). Using the same matrix of Equation 1, the sequence is transformed back to its original
length (Backward step):

𝑃 𝑏𝑤
𝑖 = Ψ(𝑅𝑒𝐿𝑈((−1)𝑖+1𝐿⊺), 𝜖) 𝑖 ∈ 1, 2

𝐵𝑏𝑤
𝑖 = 𝑅𝑒𝐿𝑈(𝑃 𝑏𝑤

𝑖 𝐹 𝑓𝑤
𝑖 ) 𝑖 ∈ 1, 2

(3)

(iii). The two results are combined through a sigmoid gate (sigmoid function indicated with
𝜎):

𝑜𝑢𝑡 = 𝜎(𝐶)⊙𝐵𝑏𝑤
1 + (1− 𝜎(𝐶))⊙𝐵𝑏𝑤

2 (4)

It can be seen in the first version of the Static Expansion, the collection of 2 ·𝑁𝐸 expansion
vectors are learnable parameters of size 𝑑. Since the original formulation was developed for
Image Captioning instead of NLP tasks, we enrich the formulation by providing each expansion
vector more awareness about the sequence by feeding them into a bilinear projection described
as:

𝐸
′
𝑄 = 𝐸𝑄(

𝑋⊺(𝑊𝑋)√
𝑇

)

𝐸
′
𝐵 = 𝐸𝐵(

𝑋⊺(𝑊𝑋)√
𝑇

)

(5)

where 𝑋 ∈ R𝑇×𝑑 is the input sequence, 𝑊 ∈ R𝑑×𝑑 and 𝐸𝑄, 𝐸𝐵 ∈ R𝑁𝐸×𝑑 are learnable
weights.

FNet layer. The Fourier Transform describes a mathematical operation that converts a
function defined in the time domain into its spectral representation. In particular, it extracts the
coefficients of its sinusoidal components localized in the frequency domain. The Discrete Fourier
Transform consists of the discrete formulation which is designed to address discontinuous and
sampled signals. In [7] they adopt such a method and replace the self-attention in BERT,
achieving remarkably close performances despite a parameter-less formulation. The discrete
Fourier transform is defined as:

𝑓𝑘+1 =
𝑁−1∑︁
𝑡=0

𝑥𝑡+1𝑒
− 2𝜋𝑖

𝑁
𝑡𝑘, 0 ≤ 𝑘 ≤ 𝑁 − 1

which is denoted in vector form as ℱ(𝑋) ∈ C𝑁×𝑑. The FNet layer is made of two DFTs applied
over the sequence dimension first and then over the hidden dimension, finally only the real
part of the results is preserved:

ℱ𝐹𝑁𝑒𝑡(𝑋) = 𝑅𝑒(ℱ𝑑(ℱ𝑁 (𝑋)))



Figure 1: Multi-Encoder Transformer.

The mixing of tokens along the two dimensions efficiently provides enough accessibility of the
sequence to the higher order units, such as non-linear projections, in order to form meaningful
compositions of its elements.

3.2. Multi-Encoder Transformer

The Multi-Encoder Transformer is made of the Transformer itself and multiple encoding blocks
joined together by means of a simple sum as depicted in Figure 1. Encoder blocks, depicted in
Figure 1, consist possibly of a stack of convolution filters, self-attentive layers, LSTMs, FNet
layer, or Static Expansion. All of them include skip-connections and normalization layers, with
the exception of the LSTM for the first and ConvS2S for the latter.

The computational burden of the additional encoder is mitigated by the absence, in almost all
cases, of the Feed-Forward layer which represents one of the computational bottlenecks of the
transformer model. The only two exceptions are the baseline Transformer encoder, where the
component is kept to maintain consistency with the original formulation, and Fnet layers, in
which the Feed-Forward is necessary for the otherwise parameter-less definition of the module.

4. Experimental setup

4.1. Datasets

We used five datasets in our experiments. The IWSLT 2015 English-Vietnamese (En-Vi) corpus,
the IWSLT 2017 English-Italian (En-It) corpus, two TED talks in Galician-English (Gl-En), Slovak-
English (Sk-En) and a Spanish-English (Sp-En) corpus provided by the European Language
Resource Coordination (ELRC). Low-resource languages commonly refer to less studied, re-
source scarce, and less commonly taught languages among other definitions [32]. In our work,
we denote low-resource languages as those that involve less than 30,000 training pairs. Although
“Sp-En” is a high-resource language, the dataset size simulates a low-resource setup.

Sequences whose post-tokenization length is greater than a certain threshold are discarded,
which results in a negligible smaller training size but a notably smaller peak GPU memory



Table 1
Data size and training configuration for each translation task.

Source Language Pair Total num. pairs Max epoch Vocab. size Training max. length

TED Talks Gl-En 10017 150 4139 150
ELRC Sp-En 21007 200 4288 200

TED Talks Sk-En 61470 350 4232 150
IWSLT15 En-Vi 133317 400 4384 150
IWSLT17 En-It 231619 200 4246 200

footprint. In all training instances, the target and the source language vocabulary are shared.
Each vocabulary is created using the BPE algorithm [33]. The maximum number of epochs
is chosen based on the number of training steps required for the validation accuracy to start
decreasing. For instance, the En-It training requires significantly fewer epochs than En-Vi most
likely because of a higher similarity between source and target languages. More Details are
reported in Table 1. Analytic experiments are performed mostly on the “En-Vi” pair, whose
size is close to the average size of adopted datasets and is preferred over “Sk-En” for better
generalization.

4.2. Models

The baseline model denoted as “Base" consists of the Transformer with 6 layers, 𝑑=512,
𝑛𝑢𝑚_ℎ𝑒𝑎𝑑𝑠=8, 𝑑𝑓𝑓=2048. When an encoder is indicated as “Base", we refer to the “Self-
Attention + FeedForward" case. For the multi-encoder Transformer, the number of additional
encoders, as well as the number of additional layers for each block, depends on the experiment
configuration and is selected in the following range of values 3, 6, 12, 18. The Static Expansion
layer uses the following 12 choices of static expansion coefficients { 6, 6, 12, 8, 12, 8, 6, 6, 12, 8,
12, 8 }. The choices of these specific coefficients are arbitrarily made and it is out of the scope
of this work to search for the optimal configuration. All kernels in the ConvS2S layers are of
width 3.

4.3. Training and Evaluation Details

Words are split according to the Byte Pair Encoding (BPE) [33], and no lower casing is ap-
plied. Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9) and Label Smoothing regularization
(smoothness 𝛾 = 0.1) are adopted. We use the Noam learning rate scheduler as described in
[2] and 4,000 warm-up steps. Training pairs are sampled without replacement using a target
length-oriented bucketing until the mini-batch reaches 4,096 words. Finally, models are trained
up to the number of epochs reported in Table 1.

We evaluate the performances using the BLEU metric [34]. In particular SacreBLEU [35]1. The
inference algorithm consists of the Beam Search with beam size 4 and in contrast to the standard
practice, no checkpoint averaging is done since the selection criteria are often time-based and
lead to different results according to the computational resources.

1SacreBLEU signature: BLEU+case.mixed+ lang.[src-lang]-[dst-lang]+numrefs.1+ smooth.exp+tok.13a+version.2.0.0



Table 2
Single encoder performances on the “En-Vi” test set. “Base” denotes the Self-Attention encoder. The
encoding method is reported in the Header, whereas the BLEU is shown in the rows.

Base [38] Base (ours) LSTM ConvS2S Static Exp FNet

31.11 31.13 29.21 30.95 29.40 29.56

Table 3
Baseline scores on the “En-Vi” test set. The language pair is reported in the Header, whereas the BLEU
is shown in the rows. In Gl-En, Sp-En models are made of 3 layers. In contrast, 6 layers are adopted in
the cases of Sk-En, En-Vi and En-It.

Gl-En Sp-En Sk-En En-Vi En-It

13.03 27.22 27.15 31.13 32.86

5. Results

5.1. Single Encoder Performances

We evaluate the performances of each single encoder strategy by replacing the encoder block in
the Transformer (with both six encoding and decoding layers) with all five encoding methods
in the “En-Vi” translation task. This data set is chosen for the analytic experiments throughout
the rest of the experiments.

Each single encoder performance is reported in Table 2. Since transformers are sensible
to hyperparameters and implementation details [36, 37] we show that our baseline achieves
a very similar performance compared to the ones typically observed in the literature. In the
particular case of [38] it presents a negligible difference of 0.02 BLEU, paving the way for a
fair comparison. In the single-encoder case, the baseline model outperforms all the other ones.
Table 3 reports the baseline performances across all translation tasks. Hence, the Self-Attention
method performs better than the others in the single-encoder configuration.

5.2. Dual-encoder Transformer and Synergy Study

In Table 4 we show how the Dual-Encoder Transformer performs on the “En-Vi” translation
task, when the baseline, whose encoder is made of Self-Attention layers, is combined with
other encoding techniques. The performance seems to increase proportionally to the number of
additional layers 𝑀 in some cases. This is particularly evident in the case of the LSTM whereas
the impact of increasing the number of layers is less significant in other cases. The number of
layers for the models presented throughout this work is based on the results in Table 4.

We observe that combining two encoders does not guarantee the overall system performs at
least as well as the single encoder case. All dual-encoders yielded a worse score compared to
the baseline with the exception of the “Base + LSTMM=18" and “Base + Static ExpM=12" which
instead scored better with a margin of 0.09 and 0.60 BLEU. This means that such improvements
are caused by neither the architectural structure nor the increase of parameters alone since
other instances performed similarly if not worse. This claim is further supported by the poor



Table 4
Performances comparison of the Dual-Encoder Transformer made of the baseline and other encoding
methods on the “En-Vi” test set.

Encoder BLEU

Base 31.13
Base + ConvS2SM=6 30.34
Base + ConvS2SM=12 30.21

Base + FNetM=6 29.20
Base + FNetM=12 29.38

Base + Static ExpM=6 31.51
Base + Static ExpM=12 31.73

Base + LSTMM=6 29.52
Base + LSTMM=12 30.84
Base + LSTMM=18 31.22

Table 5
Twin Dual-Encoder Transformer SacreBLEU scores on the “En-Vi” test set. 𝛿 represents the difference
w.r.t the baseline.

Method Single-Encoder Twin Dual-Encoder (𝛿)

Base 31.13 30.64 (-0.49)
LSTM 29.21 28.32 (-0.89)

ConvS2S 30.95 30.88 (-0.07)
Static Exp 29.40 29.12 (-0.28)

FNet 29.56 26.51 (-3.05)

Table 6
Synergy matrix of dual-encoders on the “En-Vi” test set. For brevity, encoders and the number of layers
are denoted with letters. B=BaseM=6, L=LSTMM=18, C=ConvS2SM=6, S=Static ExpM=12 and F=FNetM=6.
Each entry in row 𝑖 and column 𝑗 represents the difference in terms of BLEU score between the dual
encoder 𝑖+ 𝑗 and the single encoder performance of method 𝑗.

B L C S F

B -0.49 +2.01 -0.61 +2.33 -2.19
L +0.09 -0.89 -0.18 +0.19 -2.08
C -0.79 +1.56 -0.07 +0.67 -1.44
S +0.60 +0.38 -0.88 -0.28 -3.39
F -3.76 -1.73 -2.83 -3.23 -3.05

performances reported in Table 5 in which encoders are duplicated and summed together.
Table 4 also shows that, despite the simplicity of the combination strategy, it is possible to

design a Dual-Encoder Transformer that performs better than its respective single-encoder
counterparts. To further investigate this aspect, given the set of encoding methods E={B, L, C, S,
F} representing the self-attention, LSTM, Static Expansion and FNet respectively, we measure
the synergy 𝑠𝑖𝑗 ∈ R between method 𝑖 and 𝑗 simply as the performance difference between
the dual-encoder 𝑖+ 𝑗 and the single-encoder made of the 𝑖 method 𝑖+ 𝑖. The Synergy matrix
𝑆 is reported in Table 6.



Static Expansion and the LSTM combined well with the Transformer encoder, the latter case
was expected thanks to the works of [13, 14]. On the contrary, the ConvS2S case contradicts
the effectiveness observed in literature [20, 15, 17, 16] which highlights the limitations of our
trivial combination strategy. The pair “Base + FNet" seems to perform the worst.

5.3. Scaling Encoders

Based on the Synergy matrix reported in Table 6 we increase the number of encoders in the
Multi-Encoder Transformer and discuss their performances across all data sets. To decide which
methods are used in the dual and triple encoder configurations, we select the top three values
of the formula 𝑚𝑎𝑥𝑖,𝑗∈{1,...,5}{𝑠𝑖𝑗 + 𝑠𝑗𝑖} applied on the Synergy matrix reported in Table 6. In
particular, the top three values are represented by 2.93, 2.10 and 1.38 corresponding to “Base +
Static ExpM=12", “Base + LSTMM=18" and “LSTMM=18 + ConvS2SM=6". For this reason, we design
the Dual-Encoder as “Base + Static Exp", the Triple-Encoder is made of “Base + Static Exp +
LSTM", the Quadruple-Encoder is made of “Base + Static Exp + LSTM + ConvS2S" and the
Quintuple-Encoder is made of all encoding methods. The number of layers for each additional
encoder is configured according to the size of the training set, in particular, for “Gl-En" and
“Sp-En" we deploy a smaller version of the Multi-Encoder Transformer.

Several observations can be made from the results reported in Table 7. (i). First of all, the
Dual-Encoder outperforms the baseline across all data sets of different sizes and languages,
whereas increasing the number of encoders beyond two leads to mixed results. In particular,
the performance increase can be appreciated most in the case of two encoders; beyond this case,
the improvement is smaller if not even worse. This may explain why State-of-the-Art models in
the literature typically combine two deep learning methods at most. (ii). The Multi-Encoder
Transformer achieved a maximum increase of 5.35 and 7.16 BLEU in the case of “Gl-En” and
“Sp-En” respectively, suggesting that richer encoder representations can compensate for the
lack of data. Therefore, adopting multiple heterogeneous encoders can be a suitable strategy for
low-resource languages. (iii). In the case of bigger datasets, the Multi-Encoder Transformer
can be beneficial even though there is no clear relationship between data size and the increase
in performance. For example, “En-It” and “Sk-En” tasks benefit more from the Dual-Encoder
configuration compared to “En-Vi” despite having a greater and a smaller number of training
samples respectively. (iv). The case of the Quintuple-Encoder appears to be the breaking point
of the benefits of our approach, however, this may be caused by the Fourier Transform method
not combining well with others rather than a limitation of the scaling method.

In Table 8 we compare the best results against MarianMT [39], a Transformer model pre-
trained on 1M samples from OPUS-100 [40] and fine-tuned on our datasets for 50 epochs.
Our model performs reasonably worse in low-resource setups, due to the lack of data, but
comparably or better otherwise. This suggests that MarianMT architecture can be improved
with our approach to achieve even better results. Overall, increasing the number of deep
learning methods in the encoder can be beneficial but results may depend on the application
and data size. Deep learning practitioners may consider a trade-off between performance and
computational cost in case they decide to follow this strategy.



Table 7
BLEU scores of the Multi-Encoder Transformer across all translation tasks. N represents the number of
Transformer layers. M, Q, U and V represent the number of additional Static Expansion layers, LSTM
layers, ConvS2S layers and Fourier layers in the Dual-Encoder, Triple Encoder, Quadruple and Quintuple
Encoder respectively. 𝛿 denotes the difference with respect to the baseline. The best scores for each
translation task are underlined.

Task N Single M Dual (𝛿) Q Triple (𝛿) U Quadruple (𝛿) V Quintuple (𝛿)

Gl-En 3 13.03 6 17.68 (+4.65) 6 17.83 (+4.80) 6 18.38 (+5.35) 6 12.07 (−0.96)
Sp-En 3 27.22 6 33.63 (+6.41) 6 32.81 (+5.59) 6 34.38 (+7.16) 6 30.81 (+3.59)
Sk-En 6 27.15 12 27.96 (+0.81) 18 27.59 (+0.44) 6 26.85 (−0.3) 6 26.62 (−0.53)
En-Vi 6 31.13 12 31.73 (+0.60) 18 31.71 (+0.58) 6 30.19 (−0.94) 6 28.90 (−2.23)
En-It 6 32.86 12 33.78 (+0.92) 18 33.27 (+0.41) 6 32.90 (+0.04) 6 32.03 (−0.83)

B=Self-Attention, S=Static Expansion, L=LSTM, C=ConvS2S, F=Fourier
Single=B, Dual=B+S, Triple=B+S+L, Quadruple=B+S+L+C, Quintuple=B+S+L+C+F

Figure 2: Multi-Encoder Transformer performances.

Table 8
Performance Multi-Encoder Transformer best BLEU scores compared to the fine-tuned MarianMT.

Model
Task

Gl-En Sp-En Sk-En En-Vi En-It

Ours 18.38 34.38 27.96 31.73 33.78
MarianMT 28.29 42.24 31.01 31.16 34.54

5.4. Limitations

Although we removed, wherever possible, the feed-forward layer, the additional encoders
inevitably introduce a significant additional computational cost and memory footprint as can
be seen from Table 9. As a result, the Multi-Encoder Transformer is increasingly less efficient
than the single-encoder baseline depending on the number of additional encoders. Fortunately,
benefits can be observed early in the dual-encoder configuration and improvements can be
appreciated by using less than double the amount of training time spent for the baseline.

The performances reported in this work do not necessarily represent the full capabilities
of each model. We focused only on one configuration of the entire hyperparameter space. In
particular, we adopted the learning rate scheduler, optimizer, and initialization method of [2]



Table 9
Number of parameters (denoted with 𝜃) and the number GFLOPS (denoted as 𝜔) required by the Multi-
Encoder Transformer for the forward step of a sequence of 128 tokens in both encoder and decoder.

Model Task
Single Dual Triple Quadruple Quintuple

𝜔 𝜃 𝜔 𝜃 𝜔 𝜃 𝜔 𝜃 𝜔 𝜃

Gl-En, Sp-En 5.9 26M 8.3 31M 11.6 46M 12.8 51M 16.0 64M
Sk-En, En-Vi, En-It 11.8 48M 16.7 61M 26.4 99M 27.6 109M 30.8 135M

and the same batch size is used for most configurations. While such choices are ideal for the
Transformer, they may not be suitable for all the architectures introduced in this work. The
exploration of a variety of configurations is often recommended in order to fully appreciate
new models. Such fine-tuning practice is beyond the scope of the work.

6. Conclusions

In this work, we conducted an empirical study of the effectiveness of implementing an encoder
with an increasing number of heterogeneous Deep learning methods. We considered five Deep
Learning methods: self-attention, LSTM, convolution, static expansion, and Fourier transform.
We discovered that the Multi-Encoder Transformer can be an effective architectural design
for two encoders. However, by increasing the number of encoders beyond two, the impact is
limited and can be both positive, such as in the case of low-resource languages, and harmful in
other instances.

Despite combining different encoders with a simple sum, the Multi-Encoder Transformer,
particularly the Dual-Encoder configuration, outperformed the baseline across all benchmarks.
However, connecting more than two encoders resulted in mixed impact. We suspect this might
be due to the extreme simplicity of our combination method. Future works can investigate
better combining each encoder representation or even formulating an interconnection module
specifically designed to leverage the diversity of different Deep Learning methods.
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