
Evaluating Kernel-based Sentence Embeddings

Danilo Croce1, Simone Filice2, and Roberto Basili1

1 University of Roma Tor Vergata, Department of Enterprise Engineering
{croce,basili}@info.uniroma2.it

2 Amazon Research
filicesf@amazon.com

Abstract. Kernel-based and Deep Learning methods are two of the
most popular approaches in Computational Natural Language Learn-
ing. Although these models are rather different and characterized by dis-
tinct advantages and limitations, they both had impressive impact on the
accuracy of complex Natural Language Processing tasks. In this work,
we consider a novel neural approach that can efficiently combine kernel
methods and neural networks, in the attempt of squeezing the best from
the two paradigms. As dimensionality reduction methods, such as the
Nyström-based projection function, can be used approximate any valid
kernel function by converting underlying structures (for instance linguis-
tic structures, such as parse trees) into dense linear embeddings, we will
show how they can be used to trigger deep neural learning. Moreover, we
will investigate the linguistic implication underlying the distance mea-
sures resulting in such resulting dense spaces. Empricial evaluation on
real datasets suggests that the unsupervised Nyström embeddings are
more expressive than standard vectorial text representations, i.e., Bag-
of-Words or lexical word embeddings.

1 Introduction

Nowadays, a variety of machine learning approaches to Natural Language Pro-
cessing (NLP) are based on Deep Learning [14, 7]. This wide spread of Deep
Learning is supported by the impressive results such methods achieve, and their
feature learning capability [4, 16]: input words and sentences are usually modeled
as dense embeddings (i.e., vectors or tensors), whose dimensions correspond to
latent semantic concepts acquired during the training phase. This largely au-
tomatizes the feature engineering phase although, on the other side, it has some
inherent drawbacks. In particular, injecting linguistic information into a NN is
still an open problem. If pre-trained word embeddings are widely recognized as
an effective approach for improving lexical generalization, there is no general
agreement about how to provide syntactic information to the NN. Some struc-
tured NN models have been proposed [15, 29] although usually tailored to specific
problems. Recursive NNs [29] have been shown to learn dense feature represen-
tations of the nodes in a structure, thus exploiting similarities between nodes
and sub-trees. Also, Long-Short Term Memory networks [15] build intermediate
representations of sequences, resulting in similarity estimates over sequences and
their inner sub-sequences. Usually such intermediate representations are strongly
task dependent: this is beneficial from an engineering standpoint, but certainly
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controversial from a linguistic and cognitive point of view. Moreover, the lin-
guistic information captured by the learned models is never made explicit: it is
embedded in a latent space whose dimensions cannot be easily interpreted. Un-
derstanding the linguistic aspects that are responsible for the network decision
is not possible in very complex architectures. Few attempts to solve the inter-
pretability problem of NNs have been proposed in computer vision [12, 3], but
their extension to the NLP scenario is not straightforward.

A natural way to provide explicit infromation regarding the lexical, syntac-
tic and semantic information about training cases is by mapping them to rich
linguistic structures, such as dependency graphs or constituency trees. Kernel
methods [28] directly operate on such structures and their use in combination
with linear learning algorithms, such as Support Vector Machines (SVM) [30],
allowed to achieve very good performances in several NLP tasks, as summarized
in [23]. Sequence [5] or tree kernels [6] are of particular interest as the feature
space they capture reflects linguistic patterns. A viable and general solution to
represent linguistic structures (e.g., parse trees) in the training of a NN, that is in
form of vectors or tensors, is provided by the Nyström method [32]. It allows to
approximate the Gram matrix of a kernel function and to project input examples
into low-dimensional embeddings: this correspond to the vector space of recon-
struction coefficients against a set of selected instances, called landmarks. For
example, if used over Tree Kernels (TKs), the Nyström projection corresponds to
the embedding of trees into low-dimensional vectors, where each vector dimen-
sion reflects the kernel similarity between any input tree and the corresponding
landmark. This kind of approximation has been shown beneficial in [9] where
a Nyström based low-rank embedding of input examples has been used as the
early layer of a deep feed-forward network, achieving state-of-the-art results in
several tasks, ranging from question classification to semantic role labeling.

In this paper, we will investigate the linguistic implication underlying the
distance measures that hold within the resulting Semantic Kernel Space. Given
a tree, we expect that the most similar tree is the one sharing most of the
sub-tree structures, i.e. having a similar syntactic or semantic structure. The
research question here is the following: are such nice properties preserved in the
low-dimensional embedding generated via the Nyström methodology? The study
of such issue requires the Nyström embeddings to preserve information by sup-
porting the training and classification for a semantic task. We investigate the
application of kernels and Nyström embeddings over the task of Semantic Tex-
tual Similarity [1] that is representative of the overall grammatical and seman-
tic phenomena expressed by natural language sentences. First, we will test the
quality by which the dot-product in the Semantic Kernel Spaces reflect semantic
similarity between short texts. Then, we will use these similarities as the basis of
a clustering process over the short texts (in particular questions): this will allow
to verify if the topology of the embedding spaces is still able to group texts in
agreement with human intuition. Results suggests that such unsupervised em-
beddings are more expressive than the standard vectorial representations used
in NLP, i.e., Bag-of-Words and Word Embedding based representations.



2 Kernel-based Semantic Inference

Several NLP tasks require the explorations of complex semantic and syntactic
phenomena. For instance, in Paraphrase Detection, verifying whether two sen-
tences are valid paraphrases involves the analysis of some rewriting rules in which
the syntax plays a fundamental role. In Question Answering, the syntactic infor-
mation is crucial, as largely demonstrated in [10]. Similar needs are applicable
to the Semantic Role Labeling task, that consists in the automatic discovery of
linguistic predicates (together with their corresponding arguments) in texts.

A natural approach to exploit such linguistic information consists in applying
kernel methods [24, 28] on structured representations of data objects, e.g., doc-
uments. A sentence s can be represented as a parse tree3 that expresses the
grammatical relations implied by s. Tree kernels (TKs) [6] can be employed to
directly operate on such parse trees, evaluating the tree fragments shared by the
input trees. This operation corresponds to a dot product in the implicit feature
space of all possible tree fragments.

What is the width of a football field ?
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Fig. 1. Dependency Parse Tree of “What is the
width of a football field?”.

Whenever the dot product
is available in the implicit fea-
ture space, kernel-based learn-
ing algorithms, such as SVMs
[8], can operate in order to au-
tomatically generate robust pre-
diction models. TKs thus al-
low to estimate the similarity
among texts, directly from sen-
tence syntactic structures, that
can be represented by parse
trees. The underlying idea is that the similarity between two trees T1 and
T2 can be derived from the number of shared tree fragments. Let the set
T = {t1, t2, . . . , t|T |} be the space of all the possible substructures and χi(n2)
be an indicator function that is equal to 1 if the target ti is rooted at the node
n2 and 0 otherwise. A tree-kernel function over T1 and T2 is defined as follows:
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2) where NT1 and NT2 are the sets of

nodes of T1 and T2 respectively, and ∆(n1, n2) =
∑|T |

k=1 χk(n1)χk(n2) which
computes the number of common fragments between trees rooted at nodes n1

and n2. The feature space generated by the structural kernels obviously depends
on the input structures. Notice that different tree representations embody differ-
ent linguistic theories and may produce more or less effective syntactic/semantic
feature spaces for a given task.

Dependency grammars produce a significantly different representation which
is exemplified in Figure 1. Since tree kernels are not tailored to model the la-
beled edges that are typical of dependency graphs, these latter are rewritten into
explicit hierarchical representations. Different rewriting strategies are possible,

3 Parse trees can be extracted using automatic parsers. In our experiments, we used
the Stanford Parser https://nlp.stanford.edu/software/lex-parser.shtml.



as discussed in [10]: a representation that is shown to be effective in several
tasks is the Grammatical Relation Centered Tree (GRCT) illustrated in Figure
2: the PoS-Tags are children of grammatical function nodes and direct ancestors
of their associated lexical items. Another possible representation is the Lexical
Only Centered Tree (LOCT) showed in Figure 3, which contains only lexical
nodes and the edges reflect some dependency relations.
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Fig. 2. Grammatical Relation Centered Tree (GRCT) of
“What is the width of a football field?”.
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Fig. 3. Lexical Only Cen-
tered Tree (LOCT) of
“What is the width of a
football field?”.

Different tree kernels can be defined according to the types of tree fragments
considered in the evaluation of the matching structures. In the Subtree Ker-
nel [31], valid fragments are only the grammatically well formed and complete
subtrees: every node in a subtree corresponds to a context free rule whose left
hand side is the node label and the right hand side is completely described by
the node descendants. Subset trees are exploited by the Subset Tree Kernel [6],
which is usually referred to as Syntactic Tree Kernel (STK); they are more gen-
eral structures since their leaves can be non-terminal symbols. The subset trees
satisfy the constraint that grammatical rules cannot be broken and every tree
exhaustively represents a CFG rule. Partial Tree Kernel (PTK) [22] relaxes this
constraint considering partial trees, i.e., fragments generated by the application
of partial production rules (e.g. sequences of non terminal with gaps). The strict
constraint imposed by the STK may be problematic especially when the training
dataset is small and only few syntactic tree configurations can be observed. The
Partial Tree Kernel (PTK) overcomes this limitation, and usually leads to higher
accuracy, as shown in [22].
Capitalizing lexical information in Convolution Kernels. The tree ker-
nels introduced in previous section perform a hard match between nodes when
comparing two substructures. In NLP tasks, when nodes are words, this strict
requirement reflects in a too strict lexical constraint, that poorly reflects se-
mantic phenomena, such as the synonymy of different words or the polysemy
of a lexical entry. To overcome this limitation, we adopt Distributional models
of Lexical Semantics [26, 19] to generalize the meaning of individual words by
replacing them with geometrical representations (also called Word Embeddings)



that are automatically derived from the analysis of large-scale corpora. These
representations are based on the idea, that words occurring in the same contexts
tend to have similar meaning: the adopted distributional models generate vectors
that are similar when the associated words exhibit a similar usage in large-scale
document collections. Under this perspective, the distance between vectors re-
flects semantic relations between the represented words, such as paradigmatic
relations, e.g., quasi-synonymy4. These word spaces allow to define meaning-
ful soft matching between lexical nodes, in terms of the distance between their
representative vectors. As a result, it is possible to obtain more informative
kernel functions which are able to capture syntactic and semantic phenomena
through grammatical and lexical constraints. Moreover, the supervised setting
of a learning algorithm (such as SVM), operating over the resulting kernel, is
augmented with the word representations generated by the unsupervised distri-
butional methods, thus characterizing a cost-effective semi-supervised paradigm.

The Smoothed Partial Tree Kernel (SPTK) described in [10] exploits this idea
extending the PTK formulation with a similarity function σ between nodes:

∆SPTK(n1, n2) = µλσ(n1, n2) , if n1 and n2 are leaves

∆SPTK(n1, n2) = µσ(n1, n2)
(
λ2 +

∑
I1,I2:l(I1)=l(I2)

λd(I1)+d(I2)

l(I1)∏
k=1

∆SPTK

(
cn1(i1k), cn2(i2k)

))
(1)

In the SPTK formulation, the similarity function σ(n1, n2) between two nodes
n1 and n2 can be defined as follows:

– if n1 and n2 are both lexical nodes, then σ(n1, n2) = σLEX(n1, n2) =
τ

vn1
·vn2

‖vn1‖‖vn2‖
. It is the cosine similarity between the word vectors vn1

and

vn2 associated with the labels of n1 and n2, respectively. τ is called terminal
factor and weighs the contribution of the lexical similarity to the overall
kernel computation.

– else if n1 and n2 are nodes sharing the same label, then σ(n1, n2) = 1.
– else σ(n1, n2) = 0.

Dealing with Compositionality in Tree Kernels. The main limitations of
the SPTK are that (i) lexical semantic information only relies on the vector
metrics applied to the leaves in a context free fashion and (ii) the semantic
compositions between words is neglected in the kernel computation, that only
depends on their grammatical labels.

In [2] a solution for overcoming these issues is proposed. The pursued idea is
that the semantics of a specific word depends on its context. For example, in the
sentence, “What instrument does Hendrix play?”, the role of the word instrument
is fully captured if its composition with the verb play is taken into account. Such
combination of lexical semantic information can be directly expressed into the
tree structures, as shown in Figure 4. The resulting representation is a composi-
tional extension of a GRCT structure, where the original label dn of grammatical

4 In such spaces, vectors representing the nouns football and soccer will be near (as
they are synonyms according to one of their senses) while football and dog are far



function nodes n (i.e., dependency relations in the tree) are augmented by also
denoting their corresponding head/modifier pairs (hn,mn).

root〈play::v,*::* 〉

VB

play::v

nsubj〈play::v,Hendrix::n〉

NNP

Hendrix::n

aux〈play::v,do::v〉

VBZ

do::v

dobj〈play::v,instrument::n〉

NN

instrument::n

det〈instrument::n,what::w〉

WDT

what::w

Fig. 4. Compositional Grammatical Relation Centered Tree (CGRCT) of the sentence
“What instrument does Hendrix play?”.

In CGRCTs, (sub)tree rooted at dependency nodes can be used to provide a
contribution to the kernel that is a function of the composition of vectors, h and
m, expressing the lexical semantics of the head h and modifier m, respectively.
Several algebraic functions have been proposed in [2] to compose the vectors of
h=lh::posh and m=lm::posm into a vector ch,m representing the head modifier
pair c = 〈lh::posh,lm::posm〉, in line with the research on Compositional Distribu-
tional Semantics (e.g., [21]). In this work, we investigated the additive function
(according to the notation proposed in [21]) that assigns to a head/modifier pair
c the vector resulting from the linear combination of the vectors representing
the head and the modifier, i.e., ch,m = αh + βm. Although this composition
method is very simple and efficient, it actually produces very effective kernel
functions, as demonstrated in [2, 13]. According to the CGRCT structures, [2]
defines the Compositionally Smoothed Partial Tree Kernel (CSPTK). The core
novelty of the CSPTK is the compositionally enriched estimation of the function
σ. The function σ can be applied to lexical nodes, to POS tag nodes as well as
to augmented dependency nodes. In the algorithm the three cases are defined.
For simple lexical nodes, σ consists of a lexical kernel σLEX , such as the cosine
similarity between word vectors (sharing the same POS-tag): this is equivalent
to [10]. For POS nodes σ consists of the identity function that is 1 only when
the same POS is matched and it is 0 elsewhere.

The novelty of CSPTK corresponds to the compositional treatment of two
dependency nodes, n1 =

〈
d1, h1,m1

〉
and n2 =

〈
d2, h2,m2

〉
. The similarity

function σ in this case corresponds to a compositional function σComp between
the two nodes. σComp is not null only when the two nodes exhibit the same
dependency relation, i.e. d = d1 = d2, so that also the respective heads and
modifiers share the same POS labels. In all these cases a compositional metric
is applied over the two involved (hi,mi) compounds. In the simple case, the
cosine similarity between the two vectors ci

hi,mi = αhi +βmi, i=1,2, is applied.
Other metrics corresponds to more complex compositions Ψ((h1,m1), (h2,m2))
that account for linear algebra operators among the four vectors.

3 Approximating kernel spaces through Nyström

Given an input training dataset D, a kernel K(oi, oj) is a similarity function over
D2 that corresponds to a dot product in the implicit kernel space, i.e.,K(oi, oj) =



Φ(oi) ·Φ(oj). The advantage of kernels is that the projection function Φ(o) = x ∈
Rn is never explicitly computed [28]. In fact, this operation may be prohibitive
when the dimensionality n of the underlying kernel space is extremely large,
as for Tree Kernels [6]. Kernel functions are used by learning algorithms, such
as SVM, to operate only implicitly on instances in the kernel space, by never
accessing their explicit definition. Let us apply the projection function Φ over all
examples from D to derive representations, x denoting the rows of the matrix
X. The Gram matrix can always be computed as G = XX>, with each single
element corresponding to Gij = Φ(oi)Φ(oj) = K(oi, oj). The aim of the Nyström
method [11] is to derive a new low-dimensional embedding x̃ in a l-dimensional
space, with l� n so that G̃ = X̃X̃> and G̃ ≈ G. This is obtained by generating
an approximation G̃ of G using a subset of l columns of the matrix, i.e., a
selection of a subset L ⊂ D of the available examples, called landmarks. Suppose
we randomly sample l columns of G, and let C ∈ R|D|×l be the matrix of these
sampled columns. Then, we can rearrange the columns and rows of G and define
X = [X1 X2] such that:

G = XX> =

[
W X>1 X2

X>2 X1 X>2 X2

]
and C =

[
W

X>2 X1

]
(2)

where W = X>1 X1, i.e., the subset of G that contains only landmarks. The
Nyström approximation can be defined as:

G ≈ G̃ = CW†C> (3)

where W† denotes the Moore-Penrose inverse of W. The Singular Value De-
composition (SVD) is used to obtain W† as it follows. First, W is decom-
posed so that W = USV>, where U and V are both orthogonal matrices,
and S is a diagonal matrix containing the (non-zero) singular values of W on
its diagonal. Since W is symmetric and positive definite W = USU>. Then
W† = US−1U> = US−

1
2S−

1
2U> and the Equation 3 can be rewritten as

G ≈ G̃ = CUS−
1
2S−

1
2U>C> = (CUS−

1
2 )(CUS−

1
2 )> = X̃X̃> (4)

Given an input example o ∈ D, a new low-dimensional representation x̃ can
be thus determined by considering the corresponding item of C as x̃ = cUS−

1
2

where c is the vector whose dimensions contain the evaluations of the kernel
function between o and each landmark oj ∈ L. Therefore, the method produces
l-dimensional vectors.

4 On the expressiveness of Semantic Kernel Spaces

In this Section, we want to support the kernel formulations provided in the pre-
vious chapters via an empirical analysis that aims at confirming that (i) adopted
semantic kernels are very effective in capturing semantic and syntactic aspects
of sentences, (ii) the low dimensional embeddings produced by the Nyström
method preserve the expressiveness of the original kernel spaces.



High Performance Semantic Textual Similarity Estimation. Semantic
Textual Similarity (STS) is the task of measuring the degree of equivalence in the
underlying semantics of two snippets of text. This assessment is performed us-
ing an ordinal scale that ranges from complete semantic equivalence to complete
semantic dissimilarity. State-of-the-art systems in STS are based on supervised
methods that exploits rich features sets, complex alignment models and deep
learning techniques (e.g., [25]). In this analysis we do not aim at competing with
such systems. We just want to demonstrate that the adopted kernel functions
provide a good indicator of the semantic relatedness between two sentences: in a
completely unsupervised fashion, we will evaluate the semantic similarity between
two sentences by directly using the tree kernel functions. Then, we will verify
whether such similarity correlates with the similarity scores provided by the an-
notators.

Model Pearson

cosBoW 0.077
cosW2V 0.086

PTK 0.202
NyPTK

300 0.189
NyPTK

400 0.202

SPTK 0.262
NySPTK

300 0.252
NySPTK

400 0.263

Table 1. Analysis of the
Semantic Textual Similarity
task.

To run this analysis we adopted the question-
question portion of the STS dataset from SemEval-
2016 [1]. It includes 209 question pairs extracted
from the Stack Exchange Data Dump, whose top-
ics range from highly technical areas such as pro-
gramming and mathematics, to more casual topics
like cooking and fitness. Table 1 reports the Pearson
correlation to the gold labels of different kernel sim-
ilarities. We include two baselines model to better
assess our results. The cosBoW is the cosine similar-
ity of bag-of-words vectors. These vectors consider
only lexical information as their dimensions reflect
the occurrences of words into a text, totally ignoring
word ordering or syntactic information. This pro-
duces high-dimensional sparse space (with as many
dimensions as words in a dictionary) in which matching between different but
semantically related words are completely neglected. Word Spaces can capture
this linguistic information, where words are represented via low-dimensional em-
beddings where distance reflects semantic relations among represented lexical
items ([26]). Here, cosW2V is the cosine similarities of the vectors obtained by
averaging the word vectors associated to the words of each sentence. We used
250-dimensional word vectors generated by applying the Word2vec tool with a
Skip-gram model [19] to the entire Wikipedia.

The poor result achieved by the cosBoW suggests that lexical overlap between
texts is not particularly beneficial in this task at least when only the test data
are considered. cosW2V obtains a similar Pearson correlation: word embeddings
need a better way to be combined, by using for instance the syntactic information
(the SPTK is actually a way to achieve such target). We then experimented tree
kernels5 on LOCT tree representation, where all nodes are words, and edges
reflect some dependency relations. Such syntactic information is crucial: both

5 We used default values for the kernel parameters λ and µ, both set to 0.4. The
terminal factor has been tuned via grid-search



PTK and SPTK significantly improve the baselines. The similarity score between
two questions in thus measured in terms of the kernel function between the
corresponding parse trees, without any kind of supervision. Most importantly,
when the Nyström approximation of the kernel spaces is generated, overall results
are not impacted. An approximated semantic kernel space generated by using
only 300 landmarks, i.e., NyPTK

300 and NySPTK
300 , achieve a Pearson Correlation

which is only slightly lower than the one achieved by the corresponding tree
kernels, while using 400 landmarks, i.e., NyPTK

400 and NySPTK
400 , no difference

is observed. This demonstrates that the embeddings derived by applying the
Nyström method to tree kernel spaces are a semantically rich representation for
text, which is largely more expressive than common text representations, such
as the Bag-of-words model.

Rank

Sentence 1 Sentence 2 Gold cosBoW cosW2V NySPTK
300

How do I remove paint from
a wood floor?

How do I remove paint from
a porous table top?

4 1 3 4

How do I remove paint from
a wood floor?

How do I remove a thick
layer of paint from tiles?

3 3-4 1 3

How do I remove paint from
a wood floor?

How can I remove paint
from a deck?

2 2 4 2

How do I remove paint from
a wood floor?

How can I remove small
paint specks from a wooden
floor?

1 3-4 2 1

Table 2. Some pairs from the STS dataset. They are sorted with respect to their gold
label similarity. The last four columns indicate their ranking position with respect to
different models. In case of ties multiple positions are reported. The NySPTK

300 ranking
corresponds to the one produced by the SPTK

To better appreciate the impact of different representations we reported few
example pairs in Table 2. Pairs are sorted w.r.t. their gold label similarity (in
these examples the gold labels range from 1 to 4). While cosBoW and cosW2V

models introduce many errors in their rankings, the NySPTK
300 produces the cor-

rect ranking. In particular, the cosBoW cannot match semantically similar words
such as wood and wooden, resulting in a poor similarity between the last pair,
i.e., the one with the highest gold label similarity. Conversely, cosW2V can cap-
ture this kind of matches, however its results are still low. Probably using the
average vector for combining word embeddings is not a good choice: the syntac-
tic information of the question is completely ignored and the word embeddings
have the same contribution, regardless their syntactic/semantic role in the sen-
tence. The NySPTK

300 , approximating a tree kernel operating on syntactic trees,
overcomes this limit, as demonstrated by its good results.
Clustering linguistic structures in Semantic Kernel Spaces. In order
to prove the expressiveness of the generated semantic space, we also investi-
gated the application of clustering techniques within the approximated Nyström
spaces. The positive impact of Kernel-Based clustering methods has been already
demonstrated in several works, such as [27] and [17] where kernel functions en-
able the clustering of data even when complex and/or non-linear topologies are
involved. We selected a collection of questions from the UIUC dataset [18], com-



posed of a training and test set of 5, 452 and 500 questions, respectively. We
adopted the clustering methods formulated in [17] and implemented in KeLP6.
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Fig. 5. Cluster purity w.r.t. the number of clus-
ters on the task of Question Classification.

We first applied a traditional K-
mean algorithm in the explicit
geometrical space generated by
the BoW representation of ques-
tions. Then, we evaluated a
Kernel-based K-means formula-
tion empowered with the con-
figuration achieving best results
in [9]: a CSPTK kernel applied
to the CGRCT representation.
Finally, we approximated the
above kernel function by using
500 landmarks. We evaluated
the clustering quality in terms
of purity, i.e., the percentage of
the most frequent class in each
cluster. In fact, questions are organized in 6 classes which reflect the intent of
the question itself (like ENTITY or HUMAN); as an example, given the question
“Who is the President of Pergament?”, a user would expect an answer referring
to a HUMAN being. Figure 5 shows the purity obtained with different values of
the clustering parameter K. Since the seed of the K-means formulation and the
selection of the landmarks are random, we iterated this evaluation 5 times and
reported the average purity across the iterations. The plot shows that the adop-
tion of SPTK improves the purity w.r.t. the BoW representation. Noticeably,
the results achieved in the approximated space (the Ny curve) overlap the ones
achieved by the kernel counterpart.A deeper analysis of the clusters obtained
in the reduced space is reported in Table 4, which reports 4 of the 100 clusters
obtained by the standard K-mean algorithm over the approximated Nyström
space. The syntactic information captured by the tree kernel is clearly shown
by the items in the first two clusters, that are in the form “What are/is” and
“What is”. Most noticeably, in the second cluster all questions refer to leaders,
presidents or prime minister, as these are semantically related according the
adopted lexical word embedding. The third and forth clusters are more interest-
ing because they do not contain questions sharing the same structure, but the
linguistic generalization is more evident, where locations (such as countries and
mountains) and group of people are addressed by the questions. Most impor-
tantly, this combination of lexical, syntactic and semantic information is coded
in the 500-dimension of the approximated kernel space. The derived clusters are
very expressive in linguistic terms. In fact almost all clusters correspond more
or less explicitly to one or more syntactic-semantic patterns, such as Cluster 3.

What [LOC] {border, surround, is bounded by, comprise} [LOC] ?
or Cluster 4.

6 http://www.kelp-ml.org/?page_id=799



What [HUM] (did) [HUM] {become} ?
What [HUM] {did, does} [HUM] { { play } [sport]}, advertise} {for}?

Cluster 1
DESC What are vermicilli, rigati, zitoni, and

tubetti?
DESC What are liver enzymes?
DESC What are amaretto biscuits?
DESC What are tonsils for?
DESC What are hook worms?
DESC What are some chemical properties of

mendelevium?
ENTY What are birds descendents of?
DESC What are some children ’s rights?

Cluster 2
HUM Who is the President of Pergament?
HUM Who is the leader of Brunei?
HUM Who is the president of Bolivia?
HUM Who is the President of Ghana?
HUM Who is the leader of India?
HUM Who was the president of Vichy

France?
HUM Who was the 1st U.S. President?
HUM Who is the prime minister of Japan?
HUM Who was the oldest U.S. president?

Cluster 3
LOC What two countries ’ coastlines border

the Bay of Biscay?
LOC What country is bounded in part by the

Indian Ocean and Coral and Tasman
seas?

LOC What country do the Galapagos Islands
belong to?

LOC What part of Britain comprises the
Highlands, Central Lowlands, and
Southern Uplands?

LOC What two Caribbean countries share the
island of Hispaniola?

LOC What country surrounds San Marino,
the world ’s smallest Republic?

LOC What mountain range marks the border
of France and Spain?

LOC What strait links the Mediterranean Sea
and the Atlantic Ocean?

LOC What U.S. state includes the San Juan
Islands?

Cluster 4
ENTY What basketball maneuver did Bert

Loomis invent?
HUM What college did Joe Namath play foot-

ball for?
HUM What hockey team did Wayne Gretzky

play for?
HUM What dumb-but-loveable character did

Maurice Gosfield play on The Phil Sil-
vers Show?

HUM What Cruise Line does Kathie Lee Gif-
ford advertise for?

HUM What team did baseball ’s St. Louis
Browns become?

ENTY What war did Johnny Reb and Billy
Yank fight?

HUM What feathered cartoon characters do
Yugoslavians know as Vlaja, Gaja, and
Raja?

... ...

Table 3. Example of question clusters in the Semantic Kernel Space.

5 Conclusions

Quantitative approaches to language semantics are often difficult to evaluate and
explain as for the lack of explicit interpretation functions acting on the models
acquired through supervised or unsupervised learning. In this paper Nyström
embeddings, proposed as approximation of distance metrics (i.e. kernel func-
tions) able to support dimensionality reduction, are proposed as linear represen-
tations for syntactic and semantic phenomena in natural languages. The so-called
Nyström embeddings thus correspond to vectors in semantic spaces, determined
by the reference semantic kernels. Specifically, the vector corresponds to the re-
construction coefficients against a set of landmarks. In line with results presented
in previous papers, this work explores the linguistic readability of such vector
representations.

In particular, two NLP tasks are studied and the adoption of such linear
representation is compared against other linear methods, namely bag-of-words,
largely used in Information Retrieval, and lexical embeddings, i.e. [20], often



applied as a pre-training mechanism in neural learning. The first task is se-
mantic similarity estimation and helps in observing the impact of the adopted
Nyström vectors as linear correspondents of patterns corresponding to semanti-
cally similar sentences. Results suggest that correlations between sentence pairs
as estimated by semantic tree kernels improve significantly with respect to other
lexical embeddings, e.g. neural language models such as [20]. Unsupervised clus-
tering of NL questions is the second task that shows how semantic phenomena
(e.g. the class of questions in natural language in a Question Answering task)
behave regularly in the kernel space, even when the Nyström approximations
are used. In this way, the linear representations obtained through the Nyström
vectors cluster in the space in a semantically coherent way.

Along this line of research, more NL inference tasks and different natural lan-
guages will be involved in the future experiments in order to assess the semantic
coherence of the Nyström embeddings on a wider set of linguistic phenomena
and generalize them, correspondingly. Moreover, our aim is using these vectors
not only as triggers for neural learning, as proposed in [9], but mostly as flexible
representations for semantic phenomena. They can be retrieved from a neural
models: they in fact are isomorphic to the parameters of one or more layers in a
network and can be thus adopted to explain the neural model as encoded in the
network layers: this enables to explain a decision according to its resemblance
to know examples and patterns.
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